torch_npu.npu_min(self, dim, keepdim=False) -> (Tensor, Tensor)
使用dim对最小结果进行计数。类似于torch.min, 优化NPU设备实现。
>>> input = torch.randn(2, 2, 2, 2, dtype = torch.float32).npu() >>> input tensor([[[[-0.9909, -0.2369], [-0.9569, -0.6223]], [[ 0.1157, -0.3147], [-0.7761, 0.1344]]], [[[ 1.6292, 0.5953], [ 0.6940, -0.6367]], [[-1.2335, 0.2131], [ 1.0748, -0.7046]]]], device='npu:0') >>> outputs, indices = torch_npu.npu_min(input, 2) >>> outputs tensor([[[-0.9909, -0.6223], [-0.7761, -0.3147]], [[ 0.6940, -0.6367], [-1.2335, -0.7046]]], device='npu:0') >>> indices tensor([[[0, 1], [1, 0]], [[1, 1], [0, 1]]], device='npu:0', dtype=torch.int32)