torch_npu.npu_nms_v4(boxes, scores, max_output_size, iou_threshold, scores_threshold, pad_to_max_output_size=False) -> (Tensor, Tensor)
按分数降序选择标注框的子集。
>>> boxes=torch.randn(100,4).npu() >>> scores=torch.randn(100).npu() >>> boxes.uniform_(0,100) >>> scores.uniform_(0,1) >>> max_output_size = 20 >>> iou_threshold = torch.tensor(0.5).npu() >>> scores_threshold = torch.tensor(0.3).npu() >>> npu_output = torch_npu.npu_nms_v4(boxes, scores, max_output_size, iou_threshold, scores_threshold) >>> npu_output (tensor([57, 65, 25, 45, 43, 12, 52, 91, 23, 78, 53, 11, 24, 62, 22, 67, 9, 94, 54, 92], device='npu:0', dtype=torch.int32), tensor(20, device='npu:0', dtype=torch.int32))