torch_npu.npu_roi_align(features, rois, spatial_scale, pooled_height, pooled_width, sample_num, roi_end_mode) -> Tensor
从特征图中获取ROI特征矩阵。自定义FasterRcnn算子。
>>> x = torch.FloatTensor([[[[1, 2, 3 , 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18], [19, 20, 21, 22, 23, 24], [25, 26, 27, 28, 29, 30], [31, 32, 33, 34, 35, 36]]]]).npu() >>> rois = torch.tensor([[0, -2.0, -2.0, 22.0, 22.0]]).npu() >>> out = torch_npu.npu_roi_align(x, rois, 0.25, 3, 3, 2, 0) >>> out tensor([[[[ 4.5000, 6.5000, 8.5000], [16.5000, 18.5000, 20.5000], [28.5000, 30.5000, 32.5000]]]], device='npu:0')