torch_npu.contrib.DCNv2(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, bias=True, pack=True)
应用基于NPU的调制可变形2D卷积操作。ModulationDeformConv的实现主要是基于mmcv的实现
进行设计和重构。
- 参数解释:
- in_channels (int):Number of channels in the input image.=
- out_channels (int):Number of channels produced by the convolution.
- kernel_size(int, tuple):Size of the convolving kernel.
- stride(int, tuple):Stride of the convolution. Default: 1.
- padding (int or tuple):Zero-padding added to both sides of the input.
- Default:0.
- dilation (int or tuple):Spacing between kernel elements. Default:1.
- groups (int):Number of blocked connections from input.
- channels to output channels. Default:1.
- deform_groups (int):Number of deformable group partitions.
- bias (bool):If True, adds a learnable bias to the output. Default:False.
- pack (bool):If True, conv_offset and mask will be included in this module. Default:True.
- 约束条件:
ModedDeformConv仅实现fp32数据类型下的操作。注意,con_offset中的权重和偏置必须初始化为0。
- 示例:
>>> m = ModulatedDeformConv(32, 32, 1)
>>> input_tensor = torch.randn(2, 32, 5, 5)
>>> output = m(input_tensor)
>>> x = torch.randn(2, 32, 7, 7)
>>> model = ModulatedDeformConv(32, 32, 3, 2, 1)
>>> torch.npu.set_device(0)
>>> x = x.npu()
>>> model = model.npu()
>>> o = model(x)
>>> l = o.sum()
>>> l.backward()
>>> print(l)