LinearA8W8Quant是对torch_npu接口torch_npu.npu_quant_matmul的封装类,完成A8W8量化算子的矩阵乘计算。
torch_npu.contrib.module.LinearA8W8Quant(in_features, out_features, *, bias=True, offset=False, pertoken_scale=False, output_dtype=None)
一个Tensor类型的输出,代表量化matmul的计算结果。如果output_dtype为torch.float16,输出的数据类型为FLOAT16;如果output_dtype为torch.bfloat16,输出的数据类型为BFLOAT16;如果output_dtype为torch.int8或者None,输出的数据类型为INT8;如果output_dtype非以上数据类型,返回错误码。
1.单算子模式: 1.1 Atlas 推理系列产品:在单算子模式下不支持使能高带宽的x2数据排布,因此不能调用use_internal_format_weight,如果想追求极致性能,请使用图模式 import torch import torch_npu import logging import os import torchair as tng from torch_npu.contrib.module import LinearA8W8Quant x1 = torch.randint(-1, 1, (1, 512), dtype=torch.int8).npu() x2 = torch.randint(-1, 1, (128, 512), dtype=torch.int8).npu() scale = torch.randn(1, dtype=torch.float32).npu() offset = torch.randn(128, dtype=torch.float32).npu() bias = torch.randint(-1,1, (128,), dtype=torch.int32).npu() in_features = 512 out_features = 128 output_dtype = torch.int8 model = LinearA8W8Quant(in_features, out_features, bias=True, offset=True, output_dtype=output_dtype) model = model.npu() model.weight.data = x2 model.scale.data = scale model.offset.data = offset model.bias.data = bias // 接口内部调用npu_trans_quant_param功能 output = model(x1) 1.2 Atlas A2 训练系列产品单算子模式调用示例 import torch import torch_npu import logging import os import torchair as tng from torch_npu.contrib.module import LinearA8W8Quant x1 = torch.randint(-1, 1, (1, 512), dtype=torch.int8).npu() x2 = torch.randint(-1, 1, (128, 512), dtype=torch.int8).npu() scale = torch.randn(1, dtype=torch.float32).npu() offset = torch.randn(128, dtype=torch.float32).npu() bias = torch.randint(-1,1, (128,), dtype=torch.int32).npu() in_features = 512 out_features = 128 output_dtype = torch.int8 model = LinearA8W8Quant(in_features, out_features, bias=True, offset=True, output_dtype=output_dtype) model = model.npu() model.weight.data = x2 model.scale.data = scale model.offset.data = offset if output_dtype != torch.bfloat16: # Atlas A2 训练系列产品只包含npu_trans_quant_param功能 tng.experimental.inference.use_internal_format_weight(model) model.bias.data = bias output = model(x1) 2.图模式 import torch import torch_npu import torchair as tng from torchair.ge_concrete_graph import ge_apis as ge from torchair.configs.compiler_config import CompilerConfig from torch_npu.contrib.module import LinearA8W8Quant import logging from torchair.core.utils import logger logger.setLevel(logging.DEBUG) import os import numpy as np os.environ["ENABLE_ACLNN"] = "true" config = CompilerConfig() npu_backend = tng.get_npu_backend(compiler_config=config) x1 = torch.randint(-1, 1, (1, 512), dtype=torch.int8).npu() x2 = torch.randint(-1, 1, (128, 512), dtype=torch.int8).npu() scale = torch.randn(1, dtype=torch.float32).npu() offset = torch.randn(128, dtype=torch.float32).npu() bias = torch.randint(-1,1, (128,), dtype=torch.int32).npu() in_features = 512 out_features = 128 output_dtype = torch.int8 model = LinearA8W8Quant(in_features, out_features, bias=True, offset=True, output_dtype=output_dtype) model = model.npu() model.weight.data = x2 model.scale.data = scale model.offset.data = offset if output_dtype != torch.bfloat16: # 包含npu_trans_quant_param功能,Atlas 推理系列产品还包含使能高带宽的x2数据排布功能 tng.experimental.inference.use_internal_format_weight(model) model.bias.data = bias model = torch.compile(model, backend=npu_backend, dynamic=False) output = model(x1)