在Device侧,部分操作符执行速度过快,可能导致Device侧需等待主机端CPU下发新任务进行计算,从而造成不必要的等待时间。这种等待不仅会限制NPU的计算效率,更可能成为整个系统性能的瓶颈。为解决这一问题,可将面临下发瓶颈的操作符替换为自定义融合操作符。例如,将dropout、add和layer_norm操作融合为npu_dropout_add_layer_norm。
“npu_dropout_add_layer_norm”融合算子实现了以下计算公式:
npu_dropout_add_layer_norm(x0, residual, weight, bias, dropout_p, epsilon, rowscale=None, layerscale=None, prenorm=False, residual_in_fp32=False, return_dropout_mask=False) -> (Tensor, Tensor, Bool)
x0 |
residual |
weight |
rowscale |
layerscale |
---|---|---|---|---|
fp32 |
fp32 |
fp32 |
fp32 |
fp32 |
fp16 |
fp16 |
fp16 |
fp16 |
fp16 |
bf16 |
bf16 |
bf16 |
bf16 |
bf16 |
示例一(基础使用):
import torch import torch_npu from mindspeed.ops.dropout_add_layer_norm import npu_dropout_add_layer_norm batch, seq, hidden_size = 6, 60, 1024 x0 = torch.randn((batch, seq, hidden_size), requires_grad=True).to(torch.float).npu() weight = torch.randn((hidden_size, ), requires_grad=True).to(torch.float).npu() residual, bias, rowscale, layerscale = None, None, None, None dropout_p = 0.0 epsilon = 1e-5 prenorm, residual_in_fp32, return_dropout_mask = False, True, False # 前向传播实例 norm_result = npu_dropout_add_layer_norm(x0, residual, weight, bias, dropout_p, epsilon, rowscale, layerscale, prenorm, residual_in_fp32, return_dropout_mask) g = torch.randn_like(norm_result) norm_result.backward(g) x0_grad = x0.grad weight_grad = weight.grad
示例二:
import torch import torch_npu from mindspeed.ops.dropout_add_layer_norm import npu_dropout_add_layer_norm batch, seq, hidden_size = 6, 60, 1024 x0 = torch.randn((batch, seq, hidden_size), requires_grad=True).to(torch.float).npu() residual = torch.randn((batch, seq, hidden_size), requires_grad=True).to(torch.float).npu() weight = torch.randn((hidden_size, ), requires_grad=True).to(torch.float).npu() bias = torch.randn((hidden_size, ), requires_grad=True).to(torch.float).npu() rowscale = torch.randn((batch, seq, ), requires_grad=True).to(torch.float).npu() layerscale = torch.randn((hidden_size, ), requires_grad=True).to(torch.float).npu() dropout_p = 0.0 epsilon = 1e-5 prenorm, residual_in_fp32, return_dropout_mask = True, True, True # 前向传播实例 norm_result, pre_norm_result, mask_result = npu_dropout_add_layer_norm(x0, residual, weight, bias, dropout_p, epsilon, rowscale, layerscale, prenorm, residual_in_fp32, return_dropout_mask) g = torch.randn_like(norm_result) norm_result.backward(g) x0_grad = x0.grad residual_grad = residual.grad weight_grad = weight.grad bias_grad = bias.grad rowscale_grad = rowscale.grad layerscale_grad = layerscale.grad