简介

图像/视频数据处理的典型使用场景

如果源图或视频的分辨率、格式等与模型的要求不一致时,我们可以将源图或视频处理成符合模型的要求。如下为典型场景的举例。

图像/视频数据处理的多种方式

昇腾CANN提供了下表中的两种处理图像/视频数据的方式,本章主要介绍基于DVPP的图像/视频数据处理。

AIPP、DVPP可以分开独立使用,也可以组合使用。组合使用场景下,一般先使用DVPP对图片/视频进行解码、抠图、缩放等基本处理,但由于DVPP硬件上的约束,DVPP处理后的图片格式、分辨率有可能不满足模型的要求,因此还需要再经过AIPP进一步做色域转换、抠图、填充等处理。

例如,在Atlas 200/300/500 推理产品Atlas 训练系列产品上,由于DVPP视频解码仅支持输出YUV格式的图片,如果模型需要RGB格式的图片,则需要再经过AIPP做色域转换的处理。

处理图像/视频数据的方式

描述

AIPP(Artificial Intelligence Pre-Processing)

AIPP(Artificial Intelligence Pre-Processing)人工智能预处理,在AI Core上完成数据预处理,主要功能包括改变图像尺寸(抠图、填充等)、色域转换(转换图像格式)、减均值/乘系数(改变图像像素)等。

AIPP区分为静态AIPP和动态AIPP。您只能选择静态AIPP或动态AIPP方式来处理图片,不能同时配置静态AIPP和动态AIPP两种方式。
  • 静态AIPP:模型转换时设置AIPP模式为静态,同时设置AIPP参数,模型生成后,AIPP参数值被保存在离线模型(*.om)中,每次模型推理过程采用固定的AIPP预处理参数(无法修改)。

    如果使用静态AIPP方式,多Batch情况下共用同一份AIPP参数。

  • 动态AIPP:模型转换时仅设置AIPP模式为动态,每次模型推理前,根据需求,在执行模型前设置动态AIPP参数值,然后在模型执行时可使用不同的AIPP参数。

    如果使用动态AIPP方式,多Batch可使用不同的AIPP参数。

DVPP(Digital Vision Pre-Processing)

DVPP(Digital Video Pre-Processing)是昇腾AI处理器内置的图像处理单元,通过AscendCL媒体数据处理接口提供强大的媒体处理硬加速能力,主要功能包括缩放、抠图、格式转换、图片编解码、视频编解码等。

AscendCL提供了哪些图像/视频数据处理的功能