训练过程中支持采集性能数据,然后借助Profiling工具进行数据分析,从而准确定位系统的软、硬件性能瓶颈,提高性能分析的效率,通过针对性的性能优化方法,以最小的代价和成本实现业务场景的极致性能。
当前支持采集的性能数据主要包括:
默认训练过程中不采集Profiling性能数据,如需采集,请参考本节内容修改训练脚本。
if __name__ == '__main__': session_config = tf.ConfigProto() custom_op = session_config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" # 开启profiling采集 custom_op.parameter_map["profiling_mode"].b = True # 仅采集任务轨迹数据 custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes('{"output":"/home/HwHiAiUser/output","task_trace":"on"}') # 采集任务轨迹数据和迭代轨迹数据。可先仅采集任务轨迹数据,如果仍然无法分析到具体问题,可再采集迭代轨迹数据 # custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes('{"output":"/home/HwHiAiUser/output","task_trace":"on","training_trace":"on","aicpu":"on","fp_point":"","bp_point":"","aic_metrics":"PipeUtilization"}') (npu_sess, npu_shutdown) = init_resource(config=session_config) tf.app.run() shutdown_resource(npu_sess, npu_shutdown) close_session(npu_sess)
session_config = tf.ConfigProto(allow_soft_placement=True) run_config = tf.estimator.RunConfig( train_distribute=distribution_strategy, session_config=session_config, save_checkpoints_secs=60*60*24) classifier = tf.estimator.Estimator( model_fn=model_function, model_dir=flags_obj.model_dir, config=npu_run_config_init(run_config=run_config))
session_config = tf.ConfigProto(allow_soft_placement=True) custom_op = session_config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = 'NpuOptimizer' # 开启profiling采集 custom_op.parameter_map["profiling_mode"].b = True # 仅采集任务轨迹数据 custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes('{"output":"/home/HwHiAiUser/output","task_trace":"on"}') # 采集任务轨迹数据和迭代轨迹数据。可先仅采集任务轨迹数据,如果仍然无法分析到具体问题,可再采集迭代轨迹数据 # custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes('{"output":"/home/HwHiAiUser/output","task_trace":"on","training_trace":"on","aicpu":"on","fp_point":"","bp_point":"","aic_metrics":"PipeUtilization"}') run_config = tf.estimator.RunConfig( train_distribute=distribution_strategy, session_config=session_config, save_checkpoints_secs=60*60*24) classifier = tf.estimator.Estimator( model_fn=model_function, model_dir=flags_obj.model_dir, config=npu_run_config_init(run_config=run_config))
session_config = tf.ConfigProto() custom_op = session_config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = 'NpuOptimizer' # 使能相关配置 custom_op.parameter_map["xxx"].x = xxx run_config = tf.estimator.RunConfig( train_distribute=distribution_strategy, session_config=session_config, save_checkpoints_secs=60*60*24) classifier = tf.estimator.Estimator( model_fn=model_function, model_dir=flags_obj.model_dir, config=npu_run_config_init(run_config=run_config))
if __name__ == '__main__': session_config = tf.ConfigProto() custom_op = session_config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" # 开启profiling采集 custom_op.parameter_map["profiling_mode"].b = True # 仅采集任务轨迹数据 custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes('{"output":"/home/HwHiAiUser/output","task_trace":"on"}') # 采集任务轨迹数据和迭代轨迹数据。可先仅采集任务轨迹数据,如果仍然无法分析到具体问题,可再采集迭代轨迹数据 # custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes('{"output":"/home/HwHiAiUser/output","task_trace":"on","training_trace":"on","aicpu":"on","fp_point":"","bp_point":"","aic_metrics":"PipeUtilization"}') (npu_sess, npu_shutdown) = init_resource(config=session_config) tf.app.run() shutdown_resource(npu_sess, npu_shutdown) close_session(npu_sess)
with tf.Session(config=npu_config_proto()) as sess: sess.run(tf.global_variables_initializer()) interaction_table.init.run()
config_proto = tf.ConfigProto() custom_op = config_proto.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = 'NpuOptimizer' # 开启profiling采集 custom_op.parameter_map["profiling_mode"].b = True # 仅采集任务轨迹数据 custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes('{"output":"/home/HwHiAiUser/output","task_trace":"on"}') # 采集任务轨迹数据和迭代轨迹数据。可先仅采集任务轨迹数据,如果仍然无法分析到具体问题,可再采集迭代轨迹数据 # custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes('{"output":"/home/HwHiAiUser/output","task_trace":"on","training_trace":"on","aicpu":"on","fp_point":"","bp_point":"","aic_metrics":"PipeUtilization"}') config = npu_config_proto(config_proto=config_proto) with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) interaction_table.init.run()
if __name__ == '__main__': session_config = tf.ConfigProto() custom_op = session_config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" # 开启profiling采集 custom_op.parameter_map["profiling_mode"].b = True # 仅采集任务轨迹数据 custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes('{"output":"/home/HwHiAiUser/output","task_trace":"on"}') # 采集任务轨迹数据和迭代轨迹数据。可先仅采集任务轨迹数据,如果仍然无法分析到具体问题,可再采集迭代轨迹数据 # custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes('{"output":"/home/HwHiAiUser/output","task_trace":"on","training_trace":"on","aicpu":"on","fp_point":"","bp_point":"","aic_metrics":"PipeUtilization"}') (npu_sess, npu_shutdown) = init_resource(config=session_config) tf.app.run() shutdown_resource(npu_sess, npu_shutdown) close_session(npu_sess)
import tensorflow as tf import tensorflow.python.keras as keras from tensorflow.python.keras import backend as K from npu_bridge.npu_init import * npu_keras_sess = set_keras_session_npu_config() #数据预处理... #模型搭建... #模型编译... #模型训练...
import tensorflow as tf import tensorflow.python.keras as keras from tensorflow.python.keras import backend as K from npu_bridge.npu_init import * config_proto = tf.ConfigProto() custom_op = config_proto.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = 'NpuOptimizer' # 开启profiling采集 custom_op.parameter_map["profiling_mode"].b = True # 仅采集任务轨迹数据 custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes('{"output":"/home/HwHiAiUser/output","task_trace":"on"}') # 采集任务轨迹数据和迭代轨迹数据。可先仅采集任务轨迹数据,如果仍然无法分析到具体问题,可再采集迭代轨迹数据 # custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes('{"output":"/home/HwHiAiUser/output","task_trace":"on","training_trace":"on","aicpu":"on","fp_point":"","bp_point":"","aic_metrics":"PipeUtilization"}') npu_keras_sess = set_keras_session_npu_config(config=config_proto) #数据预处理... #模型搭建... #模型编译... #模型训练...