抠图贴图(一图多框)

基本原理

示例代码

调用接口后,需增加异常处理的分支,并记录报错日志、提示日志,此处不一一列举。以下是关键步骤的代码示例,不可以直接拷贝编译运行,仅供参考。

// 1.AscendCL初始化
aclRet = aclInit(nullptr);

// 2.运行管理资源申请(依次申请Device、Context、Stream)
aclrtContext context_;
aclrtStream stream_;
aclrtSetDevice(0);
aclrtCreateContext(&context_, 0);
aclrtCreateStream(&stream_);

// 3.指定批量抠图区域的位置、指定批量贴图区域的位置,cropAreas_和pasteAreas_是acldvppRoiConfig类型
acldvppRoiConfig *cropAreas_[2], pasteAreas_[2];
cropAreas_[0] = acldvppCreateRoiConfig(512, 711, 512, 711);
cropAreas_[1] = acldvppCreateRoiConfig(512, 711, 512, 711);
pasteAreas_[0] = acldvppCreateRoiConfig(16, 215, 16, 215);
pasteAreas_[1] = acldvppCreateRoiConfig(16, 215, 16, 215);

// 4. 创建图片数据处理通道时的通道描述信息,dvppChannelDesc_是acldvppChannelDesc类型
dvppChannelDesc_ = acldvppCreateChannelDesc();

// 5. 创建图片数据处理的通道。
aclError ret = acldvppCreateChannel(dvppChannelDesc_);

// 6. 申请输入内存(区分运行状态)
// 调用aclrtGetRunMode接口获取软件栈的运行模式,如果调用aclrtGetRunMode接口获取软件栈的运行模式为ACL_HOST,则需要通过aclrtMemcpy接口将输入图片数据传输到Device,数据传输完成后,需及时释放内存;否则直接申请并使用Device的内存
aclrtRunMode runMode;
ret = aclrtGetRunMode(&runMode);
// inputPicWidth、inputPicHeight分别表示图片的对齐后宽、对齐后高,此处以YUV420SP格式的图片为例
uint32_t vpcInBufferSize = inputPicWidth * inputPicHeight * 3 / 2;
if(runMode == ACL_HOST) { 
    
    void* vpcInHostBuffer = nullptr;
    vpcInHostBuffer = malloc(vpcInBufferSize);
    // 将输入图片读入内存中,该自定义函数ReadPicFile由用户实现
    ReadPicFile(picName, vpcInHostBuffer, vpcInBufferSize);
    // 申请Device内存vpcInDevBuffer_
    aclRet = acldvppMalloc(&vpcInDevBuffer_, vpcInBufferSize);
    
    aclRet = aclrtMemcpy(vpcInDevBuffer_, vpcInBufferSize, vpcInHostBuffer, vpcInBufferSize, ACL_MEMCPY_HOST_TO_DEVICE);
    // 数据传输完成后,及时释放内存
    free(vpcInHostBuffer);
} else {
    // 申请Device输入内存vpcInDevBuffer_
    ret = acldvppMalloc(&vpcInDevBuffer_, vpcInBufferSize);
    // 将输入图片读入内存中,该自定义函数ReadPicFile由用户实现
    ReadPicFile(picName, vpcInDevBuffer_, vpcInBufferSize);
}

// 7. 申请输出内存vpcOutBufferDev_,内存大小vpcOutBufferSize_根据计算公式得出
// outputPicWidth、outputPicHeight分别表示图片的对齐后宽、对齐后高,此处以YUV420SP格式的图片为例
uint32_t vpcOutBufferSize_ = outputPicWidth * outputPicHeight * 3 / 2;
ret = acldvppMalloc(&vpcOutBufferDev_, vpcOutBufferSize_)

// 8. 创建输入图片的描述信息,并设置各属性值
// 此处示例将解码的输出内存作为抠图贴图的输入,vpcInputDesc_是acldvppPicDesc类型
vpcInputBatchDesc_ = acldvppCreateBatchPicDesc(1);
vpcInputDesc_ = acldvppGetPicDesc(vpcInputBatchDesc_, 0);
acldvppSetPicDescData(vpcInputDesc_, decodeOutBufferDev_); 
acldvppSetPicDescFormat(vpcInputDesc_, PIXEL_FORMAT_YUV_SEMIPLANAR_420);
acldvppSetPicDescWidth(vpcInputDesc_, inputWidth_);
acldvppSetPicDescHeight(vpcInputDesc_, inputHeight_);
acldvppSetPicDescWidthStride(vpcInputDesc_, jpegOutWidthStride);
acldvppSetPicDescHeightStride(vpcInputDesc_, jpegOutHeightStride);
acldvppSetPicDescSize(vpcInputDesc_, jpegOutBufferSize);

// 9. 创建批量输出图片的描述信息,并设置各属性值
// 如果抠图贴图的输出图片作为模型推理的输入,则输出图片的宽高要与模型要求的宽高保持一致
// vpcOutputDesc_是acldvppPicDesc类型
vpcOutputBatchDesc_ = acldvppCreateBatchPicDesc(2);
for (index=0; index<2; ++index){
     vecOutPtr_.push_back(vpcOutBufferDev_);
     vpcOutputDesc_ = acldvppGetPicDesc(vpcInputBatchDesc_, index);
    acldvppSetPicDescData(vpcOutputDesc_, vpcOutBufferDev_);
    acldvppSetPicDescFormat(vpcOutputDesc_, PIXEL_FORMAT_YUV_SEMIPLANAR_420);
    acldvppSetPicDescWidth(vpcOutputDesc_, dvppOutWidth);
    acldvppSetPicDescHeight(vpcOutputDesc_, dvppOutHeight);
    acldvppSetPicDescWidthStride(vpcOutputDesc_, dvppOutWidthStride);
    acldvppSetPicDescHeightStride(vpcOutputDesc_, dvppOutHeightStride);
    acldvppSetPicDescSize(vpcOutputDesc_, vpcOutBufferSize_);
}

// 10. 创建roiNums,每张图对应需要抠图和贴图的数量

uint32_ttotalNum = 0;
std::unique_ptr<uint32_t[]> roiNums(new (std::nothrow) uint32_t[1]);
roiNums[0]=2;
// 11. 执行异步抠图贴图,再调用aclrtSynchronizeStream接口阻塞程序运行,直到指定Stream中的所有任务都完成
ret = acldvppVpcBatchCropAndPasteAsync(dvppChannelDesc_, vpcInputBatchDesc_, roiNums.get(), 1,
        vpcOutputBatchDesc_, cropAreas_, pasteAreas_, stream_);
ret = aclrtSynchronizeStream(stream_);

// 12. 抠图贴图结束后,释放资源,包括输入/输出图片的描述信息、输入/输出内存、通道描述信息、通道等
acldvppDestroyRoiConfig(cropAreas_[0]);
acldvppDestroyRoiConfig(cropAreas_[1]);
acldvppDestroyRoiConfig(pasteAreas_[0]);
acldvppDestroyRoiConfig(pasteAreas_[1]);
(void)acldvppFree(vpcInDevBuffer_);
for(index=0; index<2; ++index){
if(runMode == ACL_HOST) { 
    // 该模式下,由于处理结果在Device侧,因此需要调用内存复制接口传输结果数据后,再释放Device侧内存
    
    void* vpcOutHostBuffer = nullptr;
    vpcOutHostBuffer = malloc(vpcOutBufferSize_);
    
    aclRet = aclrtMemcpy(vpcOutHostBuffer, vpcOutBufferSize_, vpcOutBufferDev_, vpcOutBufferSize_, ACL_MEMCPY_DEVICE_TO_HOST);
    // 释放掉输入输出的device内存
    (void)acldvppFree(vpcOutBufferDev_);
    // 数据使用完成后,释放内存
    free(vpcOutHostBuffer);
} else { 
    // 此时运行在device侧,处理结果也在Device侧,可以根据需要操作处理结果后,释放Device侧内存
    
    (void)acldvppFree(vpcOutBufferDev_);
}
}
acldvppDestroyBatchPicDesc(vpcInputDesc_);
acldvppDestroyBatchPicDesc(vpcOutputDesc_);
acldvppDestroyChannel(dvppChannelDesc_);
(void)acldvppDestroyChannelDesc(dvppChannelDesc_);
dvppChannelDesc_ = nullptr;

// 13. 释放运行管理资源(依次释放Stream、Context、Device)
aclrtDestroyStream(stream_);
aclrtDestroyContext(context_);
aclrtResetDevice(0);

// 14.AscendCL去初始化
aclRet = aclFinalize();

// ....