本章节为您介绍如何使用AMCT快速体验压缩一个模型。
AMCT支持命令行方式和Python API接口方式量化原始网络模型,命令行方式相比Python API接口方式有以下优点:
命令行方式 |
Python API接口方式 |
---|---|
量化准备动作简单,只需准备模型和模型匹配的数据集即可。 |
需要了解Python语法和量化流程。 |
量化过程简单,只涉及参数选择,无需对量化脚本进行适配。 |
需要适配修改量化脚本。 |
当前仅支持如下特性:
|
支持量化的所有功能。 |
本章节以sample中ResNet-101网络模型为例,为您介绍如何借助命令行方式快速体验量化一个模型,Python API接口方式请参见量化。
切换到amct_sample目录,执行如下命令解压sample包。
unzip samples-master.zip cd samples-master/python/level1_single_api/9_amct/amct_onnx/cmd
获得如下目录信息:
|-- README_CN.md |-- data # 数据集存放路径 |-- model # ONNX 模型文件所在目录 |-- scripts | |-- run_calibration.sh # 执行量化封装脚本 | |-- run_convert_qat.sh # QAT模型适配CANN模型命令行脚本 | |-- run_customized_calibration.sh # 用户自定义的训练后量化脚本 |-- src |-- process_data.py # 数据集预处理脚本 |-- evaluator.py #系统内置的,基于“Evaluator”基类并且包含evaluator评估器的python脚本
单击Link,获取resnet101_v11.onnx网络的模型文件(*.onnx),并以AMCT软件包运行用户将获取的文件上传至Linux服务器sample目录amct_onnx/cmd/model。
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/amct_acl/classification/imagenet_calibration.tar.gz tar -zxvf imagenet_calibration.tar.gz
执行完成后,在images目录会生成*.jpg格式数据集。
python3 ./src/process_data.py
执行完成后,在data目录生成calibration目录,并在该目录中生成calibration.bin格式数据集。
amct_onnx calibration --model ./model/resnet101_v11.onnx --save_path ./results/resnet101_v11 --input_shape "input:16,3,224,224" --data_dir "./data/calibration" --data_types "float32"
amct_onnx二进制所在路径为安装用户$HOME/.local/bin目录。用户可以通过amct_onnx calibration --help命令查看命令行涉及的所有参数,关于参数的详细解释以及使用方法请参见命令行参数说明。
INFO - [AMCT]:[Utils]: The model file is saved in $HOME/xxx/results/resnet101_v11_fake_quant_model.onnx
量化后生成文件说明如下: