本章节以压缩特性中的量化功能为例,为您介绍如何使用AMCT压缩一个模型。
AMCT支持命令行方式和Python API接口方式量化原始网络模型,命令行方式相比Python API接口方式有以下优点:
命令行方式 |
Python API接口方式 |
---|---|
量化准备动作简单,只需准备模型和模型匹配的数据集即可。 |
需要了解Python语法和量化流程。 |
量化过程简单,只涉及参数选择,无需对量化脚本进行适配。 |
需要适配修改量化脚本。 |
当前仅支持如下特性:
|
支持量化的所有功能。 |
本章节以sample中MobileNet V2网络模型为例,为您介绍如何借助命令行方式快速体验量化一个模型,Python API接口方式请参见量化。
切换到amct_sample目录,执行如下命令解压sample包。
unzip samples-master.zip cd samples-master/python/level1_single_api/9_amct/amct_tensorflow/cmd
获得如下目录信息:
|-- README_CN.md |-- data # 数据集存放路径 |-- model # TensorFlow模型文件所在目录 |-- scripts | |-- run_calibration.sh # 执行量化封装脚本 | |-- run_convert_qat.sh # QAT模型适配CANN模型命令行脚本 | |-- run_customized_calibration.sh # 用户自定义的训练后量化脚本 |-- src |-- evaluator.py #系统内置的,基于“Evaluator”基类并且包含evaluator评估器的python脚本 |-- process_data.py # 数据集预处理脚本
单击Link获取MobileNet V2网络模型,解压后将其中的(*.pb)文件,以AMCT软件包运行用户上传至Linux服务器sample目录amct_tensorflow/cmd/model。
cd amct_tensorflow/cmd/data mkdir image && cd image wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/amct_acl/classification/calibration.rar unrar e calibration.rar
上述命令执行完成后,在image/calibration目录会生成*.jpg格式数据集。
python3 ./src/process_data.py
执行完成后,在data目录会生成新的calibration目录,并在该目录生成calibration.bin格式数据集。
amct_tensorflow calibration --model=./model/mobilenet_v2_1.0_224_frozen.pb --save_path=./results/mobilenet_v2 --outputs="MobilenetV2/Predictions/Reshape_1:0" --input_shape="input:32,224,224,3" --data_dir="./data/calibration/" --data_types="float32"
amct_tensorflow二进制所在路径为安装用户$HOME/.local/bin目录。用户可以通过amct_tensorflow calibration --help命令查看命令行涉及的所有参数,关于参数的详细解释以及使用方法请参见命令行参数说明。
INFO - [AMCT]:[save_model]: The model is saved in $HOME/xxx/results/mobilenet_v2_quantized.pb
量化后生成文件说明如下: