aclnnAddmv

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

功能描述

aclnnAddmvGetWorkspaceSize

aclnnAddmv

约束与限制

对于Atlas 训练系列产品,Cube单元不支持FLOAT32计算。当输入为FLOAT32,可通过设置cubeMathType=1(ALLOW_FP32_DOWN_PRECISION)来允许接口内部cast到FLOAT16进行计算。

调用示例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/level2/aclnn_addmv.h"

#define CHECK_RET(cond, return_expr) \
    do {                             \
        if (!(cond)) {               \
            return_expr;             \
        }                            \
    } while (0)

#define LOG_PRINT(message, ...)         \
    do {                                \
        printf(message, ##__VA_ARGS__); \
    } while (0)

int64_t GetShapeSize(const std::vector<int64_t> &shape) {
    int64_t shape_size = 1;
    for (auto i : shape) {
        shape_size *= i;
    }
    return shape_size;
}

int Init(int32_t deviceId, aclrtContext *context, aclrtStream *stream) {
    // 固定写法,acl初始化
    auto ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateContext(context, deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetCurrentContext(*context);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);

    ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
    aclDataType dataType, aclTensor **tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }
    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(),
        shape.size(),
        dataType,
        strides.data(),
        0,
        aclFormat::ACL_FORMAT_ND,
        shape.data(),
        shape.size(),
        *deviceAddr);
    return 0;
}

int main() {
    // 1. (固定写法)device/context/stream初始化, 参考acl对外接口列表
    // 根据自己的实际device填写deviceId
    int32_t deviceId = 0;
    aclrtContext context;
    aclrtStream stream;
    auto ret = Init(deviceId, &context, &stream);
    // check根据自己的需要处理
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

    // 2. 构造输入与输出,需要根据API的接口自定义构造
    std::vector<int64_t> selfShape = {2};
    std::vector<int64_t> matShape = {2, 2};
    std::vector<int64_t> vecShape = {2};
    std::vector<int64_t> outShape = {2};
    void *selfDeviceAddr = nullptr;
    void *matDeviceAddr = nullptr;
    void *vecDeviceAddr = nullptr;
    void *outDeviceAddr = nullptr;
    aclTensor *self = nullptr;
    aclTensor *mat = nullptr;
    aclTensor *vec = nullptr;
    aclScalar *alpha = nullptr;
    aclScalar *beta = nullptr;
    aclTensor *out = nullptr;
    std::vector<float> selfHostData = {1, 1};
    std::vector<float> matHostData = {1, 1, 1, 1};
    std::vector<float> vecHostData = {1, 1};
    std::vector<float> outHostData = {0, 0};
    float alphaValue = 1.0f;
    float betaValue = 1.0f;
    int8_t cubeMathType = 1;
    // 创建self aclTensor
    ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建mat aclTensor
    ret = CreateAclTensor(matHostData, matShape, &matDeviceAddr, aclDataType::ACL_FLOAT, &mat);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建vec aclTensor
    ret = CreateAclTensor(vecHostData, vecShape, &vecDeviceAddr, aclDataType::ACL_FLOAT, &vec);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建out aclTensor
    ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建alpha aclScalar
    alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
    CHECK_RET(alpha != nullptr, return ret);
    // 创建upper aclScalar
    beta = aclCreateScalar(&betaValue, aclDataType::ACL_FLOAT);
    CHECK_RET(beta != nullptr, return ret);

    // 3. 调用CANN算子库API
    uint64_t workspaceSize = 0;
    aclOpExecutor *executor;
    // 调用aclnnAddmv第一段接口
    ret = aclnnAddmvGetWorkspaceSize(self, mat, vec, alpha, beta, out, cubeMathType, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAddmvGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    void *workspaceAddr = nullptr;
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
    }
    // 调用aclnnAddmv第二段接口
    ret = aclnnAddmv(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAddmv failed. ERROR: %d\n", ret); return ret);

    // 4. (固定写法)同步等待任务执行结束
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

    // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
    auto size = GetShapeSize(outShape);
    std::vector<float> resultData(size, 0);
    ret = aclrtMemcpy(resultData.data(),
        resultData.size() * sizeof(resultData[0]),
        outDeviceAddr,
        size * sizeof(resultData[0]),
        ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    for (int64_t i = 0; i < size; i++) {
        LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
    }

    // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
    aclDestroyTensor(self);
    aclDestroyTensor(mat);
    aclDestroyTensor(vec);
    aclDestroyTensor(out);
    aclDestroyScalar(alpha);
    aclDestroyScalar(beta);
    return 0;
}