每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
aclnnStatus aclnnBincountGetWorkspaceSize(const aclTensor *self, const aclTensor * weights, int64_t minlength, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
aclnnStatus aclnnBincount(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
返回aclnnStatus状态码,具体参见aclnn返回码。
无
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/level2/aclnn_max.h" #include "aclnnop/level2/aclnn_bincount.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shape_size = 1; for (auto i : shape) { shape_size *= i; } return shape_size; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,acl初始化 auto ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. (固定写法)device/context/stream初始化, 参考acl对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext contextMax; aclrtStream streamMax; auto ret = Init(deviceId, &contextMax, &streamMax); // check根据自己的需要处理 CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 先调max获取self中的最大值,然后使用该最大值与minlength比较最大值去获得输出tensor的size // 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> selfShape = {8}; std::vector<int64_t> maxOutShape={1}; std::vector<int32_t> selfHostData = {8,1,2,3,4,5,6,7}; std::vector<int32_t> maxOutHostData(1, 0); void* selfDeviceAddr = nullptr; void* maxOutDeviceAddr = nullptr; aclTensor* self = nullptr; aclTensor* maxOut = nullptr; ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_INT32, &self); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(maxOutHostData, maxOutShape, &maxOutDeviceAddr, aclDataType::ACL_INT32, &maxOut); CHECK_RET(ret == ACL_SUCCESS, return ret); // 调用CANN算子库API,需要修改为具体的HostApi uint64_t workspaceSizeMax = 0; aclOpExecutor* executorMax; // 调用aclnnMax第一段接口 ret = aclnnMaxGetWorkspaceSize(self, maxOut, &workspaceSizeMax, &executorMax); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMaxGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddrMax = nullptr; if (workspaceSizeMax > 0) { ret = aclrtMalloc(&workspaceAddrMax, workspaceSizeMax, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;); } // 调用aclnnMax第二段接口 ret = aclnnMax(workspaceAddrMax, workspaceSizeMax, executorMax, streamMax); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMax failed. ERROR: %d\n", ret); return ret); // (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(streamMax); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 std::vector<int32_t> resultDataMax(1, 0); ret = aclrtMemcpy(resultDataMax.data(), sizeof(resultDataMax[0]), maxOutDeviceAddr, sizeof(int32_t), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); // 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyTensor(maxOut); // 3. 构造输入与输出,需要根据API的接口自定义构造 int64_t minlength = 0; int64_t outSize = (resultDataMax[0] < minlength) ? minlength : resultDataMax[0] + 1; std::vector<int64_t> weightsShape = {8}; std::vector<int64_t> outShape = {outSize}; void* weightsDeviceAddr = nullptr; void* outDeviceAddr = nullptr; aclTensor* weights = nullptr; aclTensor* out = nullptr; std::vector<float> weightsHostData = {1, 1, 1.1, 2, 2, 2, 3, 3}; std::vector<float> outHostData(outSize, 0); ret = CreateAclTensor(weightsHostData, weightsShape, &weightsDeviceAddr, aclDataType::ACL_FLOAT, &weights); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out); CHECK_RET(ret == ACL_SUCCESS, return ret); // 调用CANN算子库API,需要修改为具体的HostApi uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnBincount第一段接口 ret = aclnnBincountGetWorkspaceSize(self, weights, minlength, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBincountGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;); } // 调用aclnnBincount第二段接口 ret = aclnnBincount(workspaceAddr, workspaceSize, executor, streamMax); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBincount failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(streamMax); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outShape); std::vector<float> resultData(size, 55); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyTensor(self); aclDestroyTensor(weights); aclDestroyTensor(out); return 0; }