每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
aclnnStatus aclnnConvolutionBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *input, const aclTensor *weight, const aclIntArray *biasSizes, const aclIntArray *stride, const aclIntArray *padding, const aclIntArray *dilation, const bool transposed, const aclIntArray *outputPadding, const int groups, const aclBoolArray *outputMask, int8_t cubeMathType, aclTensor *gradInput, aclTensor *gradWeight, aclTensor *gradBias, uint64_t *workspaceSize, aclOpExecutor **executor)
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
aclnnStatus aclnnConvolutionBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
返回aclnnStatus状态码,具体参见aclnn返回码。
无
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/level2/aclnn_convolution_backward.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,acl初始化 auto ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor if (shape.size() == 4) { *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_NCHW, shape.data(), shape.size(), *deviceAddr); } else { *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); } return 0; } int main() { // 1. (固定写法)device/context/stream初始化,参考acl对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> gradOutputShape = {2, 2, 7, 7}; std::vector<int64_t> inputShape = {2, 2, 7, 7}; std::vector<int64_t> weightShape = {2, 2, 1, 1}; std::vector<int64_t> bias = {2}; std::vector<int64_t> stride = {1, 1}; std::vector<int64_t> padding = {0, 0}; std::vector<int64_t> dilation = {1, 1}; bool transposed = false; std::vector<int64_t> outputPadding = {0, 0}; int groups = 1; bool outputMask[3] = {true, true, true}; int8_t cubeMathType = 0; std::vector<int64_t> gradInputShape = {2, 2, 7, 7}; std::vector<int64_t> gradWeightShape = {2, 2, 1, 1}; std::vector<int64_t> gradBiasShape = {2}; // 创建gradOut aclTensor std::vector<float> gradOutputData(GetShapeSize(gradOutputShape) * 2, 1); aclTensor* gradOutput = nullptr; void *gradOutputdeviceAddr = nullptr; ret = CreateAclTensor(gradOutputData, gradOutputShape, &gradOutputdeviceAddr, aclDataType::ACL_FLOAT16, &gradOutput); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建input aclTensor std::vector<float> inputData(GetShapeSize(inputShape) * 2, 1); aclTensor* input = nullptr; void *inputdeviceAddr = nullptr; ret = CreateAclTensor(inputData, inputShape, &inputdeviceAddr, aclDataType::ACL_FLOAT16, &input); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建weight aclTensor std::vector<float> weightData(GetShapeSize(weightShape) * 2, 1); aclTensor* weight = nullptr; void *weightDeviceAddr = nullptr; ret = CreateAclTensor(weightData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT16, &weight); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建gradInput aclTensor std::vector<float> gradInputData(GetShapeSize(gradInputShape) * 2, 1); aclTensor* gradInput = nullptr; void *gradInputDeviceAddr = nullptr; ret = CreateAclTensor(gradInputData, gradInputShape, &gradInputDeviceAddr, aclDataType::ACL_FLOAT16, &gradInput); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建gradWeight aclTensor std::vector<float> gradWeightData(GetShapeSize(gradWeightShape) * 2, 1); aclTensor* gradWeight = nullptr; void *gradWeightDeviceAddr = nullptr; ret = CreateAclTensor(gradWeightData, gradWeightShape, &gradWeightDeviceAddr, aclDataType::ACL_FLOAT16, &gradWeight); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建gradBias aclTensor std::vector<float> gradBiasData(GetShapeSize(gradBiasShape) * 2, 1); aclTensor* gradBias = nullptr; void *gradBiasDeviceAddr = nullptr; ret = CreateAclTensor(gradBiasData, gradBiasShape, &gradBiasDeviceAddr, aclDataType::ACL_FLOAT16, &gradBias); CHECK_RET(ret == ACL_SUCCESS, return ret); aclIntArray *biasSizes = aclCreateIntArray(bias.data(), 1); aclIntArray *strides = aclCreateIntArray(stride.data(), 2); aclIntArray *pads = aclCreateIntArray(padding.data(), 2); aclIntArray *dilations = aclCreateIntArray(dilation.data(), 2); aclIntArray *outputPads = aclCreateIntArray(outputPadding.data(), 2); aclBoolArray *outMask = aclCreateBoolArray(outputMask, 3); // 3. 调用CANN算子库API,需要修改为具体的Api名称 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnConvolutionBackward第一段接口 ret = aclnnConvolutionBackwardGetWorkspaceSize(gradOutput, input, weight, biasSizes, strides, pads, dilations, transposed, outputPads, groups, outMask, cubeMathType, gradInput, gradWeight, gradBias, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvolutionBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnConvolutionBackward第二段接口 ret = aclnnConvolutionBackward(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvolutionBackward failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(gradInputShape); std::vector<float> gradInputResult(size, 0); ret = aclrtMemcpy(gradInputResult.data(), gradInputResult.size() * sizeof(gradInputResult[0]), gradInputDeviceAddr, size * sizeof(gradInputResult[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("gradInputResult[%ld] is: %f\n", i, gradInputResult[i]); } size = GetShapeSize(gradWeightShape); std::vector<float> gradWeightResult(size, 0); ret = aclrtMemcpy(gradWeightResult.data(), gradWeightResult.size() * sizeof(gradWeightResult[0]), gradWeightDeviceAddr, size * sizeof(gradWeightResult[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("gradWeightResult[%ld] is: %f\n", i, gradWeightResult[i]); } size = GetShapeSize(gradBiasShape); std::vector<float> gradBiasResult(size, 0); ret = aclrtMemcpy(gradBiasResult.data(), gradBiasResult.size() * sizeof(gradBiasResult[0]), gradInputDeviceAddr, size * sizeof(gradBiasResult[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("gradBiasResult[%ld] is: %f\n", i, gradBiasResult[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyTensor(gradOutput); aclDestroyTensor(input); aclDestroyTensor(weight); aclDestroyTensor(gradInput); aclDestroyTensor(gradWeight); aclDestroyTensor(gradBias); return 0; }