每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
算子功能:损失函数aclnnCtcloss的反向传播。
aclnnStatus aclnnCtcLossBackwardGetWorkspaceSize(const aclTensor *gradOut, const aclTensor *logProbs, const aclTensor *targets, const aclIntArray *inputLengths, const aclIntArray *targetLengths, const aclTensor *negLogLikelihood, const aclTensor *logAlpha, int64_t blank, bool zeroInfinity, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
aclnnStatus aclnnCtcLossBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
返回aclnnStatus状态码,具体参见aclnn返回码。
无
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/level2/aclnn_ctc_loss_backward.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shape_size = 1; for (auto i : shape) { shape_size *= i; } return shape_size; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,acl初始化 auto ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. (固定写法)device/context/stream初始化, 参考acl对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); // check根据自己的需要处理 CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> gradOutShape = {4}; // logProbsShape (T, N, C) std::vector<int64_t> logProbsShape = {12, 4, 5}; std::vector<int64_t> targetsShape = {4, 7}; std::vector<int64_t> negLoglikelihoodShape = {4}; // logAlphaShape (N, T, X) X = ((max(targetLengths) * 2 + 1) + 7) / 8 * 8; std::vector<int64_t> logAlphaShape = {4, 12, 16}; std::vector<int64_t> outShape = {12, 4, 5}; void* gradOutDeviceAddr = nullptr; void* logProbsDeviceAddr = nullptr; void* targetsDeviceAddr = nullptr; void* negLoglikelihoodDeviceAddr = nullptr; void* logAlphaDeviceAddr = nullptr; void* outDeviceAddr = nullptr; aclTensor* gradOut = nullptr; aclTensor* logProbs = nullptr; aclTensor* targets = nullptr; aclIntArray* inputLengths = nullptr; aclIntArray* targetLengths = nullptr; aclTensor* negLoglikelihood = nullptr; aclTensor* logAlpha = nullptr; aclTensor* out = nullptr; std::vector<float> gradOutHostData = {1, 1, 1, 1}; std::vector<float> logProbsHostData = { -1.0894, -2.7162, -0.9764, -1.9126, -2.6162, -2.0684, -2.4871, -2.0866, -1.7205, -0.7187, -2.4423, -1.2017, -1.4653, -1.1821, -2.5942, -2.4670, -2.7257, -1.4135, -2.1042, -0.7248, -3.7759, -1.3742, -1.2549, -1.5807, -1.4562, -1.3826, -1.8995, -1.8527, -0.9493, -2.8895, -1.6316, -2.6603, -2.5014, -0.6992, -1.8609, -1.9269, -2.2350, -0.8073, -1.8906, -1.8947, -0.3468, -2.5855, -2.0723, -2.7147, -3.6668, -0.9541, -1.7258, -2.0693, -1.6378, -2.1531, -3.5386, -3.4830, -0.2532, -2.0557, -3.3261, -1.1480, -1.8080, -0.8244, -3.2414, -3.1909, -0.8866, -0.7540, -4.4312, -3.4634, -2.6000, -1.2785, -1.8347, -3.3122, -0.7620, -2.8349, -1.4975, -1.3865, -0.9645, -3.8171, -2.0939, -2.3536, -2.0773, -1.4981, -0.8372, -2.0938, -1.2186, -0.8285, -2.9399, -2.1159, -2.3620, -2.3139, -0.6503, -2.7249, -1.2340, -3.7927, -0.7143, -2.5084, -3.2826, -2.6651, -1.1334, -1.6965, -1.9728, -2.3849, -1.6052, -0.9554, -1.6384, -1.2596, -2.1680, -1.8476, -1.3866, -3.0455, -0.5737, -2.5339, -2.1118, -1.6681, -2.4675, -2.8842, -0.4329, -3.6266, -1.6925, -3.1023, -2.7696, -1.2755, -0.6470, -2.4143, -2.0107, -2.0912, -1.3053, -0.8557, -3.0683, -1.2872, -3.6523, -1.6703, -2.7596, -0.8063, -2.4633, -1.2959, -1.6153, -2.3072, -1.0705, -3.0543, -0.6473, -1.1650, -2.9025, -2.7710, -3.5519, -2.0400, -1.8667, -1.4289, -0.8050, -1.4602, -0.7452, -1.5754, -3.1624, -3.1247, -1.4677, -1.2725, -2.9575, -1.8883, -1.2513, -1.2164, -1.5894, -2.2217, -2.3714, -1.2110, -2.0843, -0.6515, -1.4252, -2.9402, -2.7964, -1.5261, -2.5471, -1.7167, -1.9846, -0.9488, -1.4847, -1.7093, -1.4095, -1.7293, -1.7675, -0.9203, -4.2299, -1.8740, -1.4076, -1.6671, -1.9052, -0.8330, -2.1839, -2.2459, -1.6193, -2.9108, -1.2114, -1.4616, -1.7297, -1.4330, -2.2656, -0.7878, -1.8533, -1.8711, -2.0349, -2.2457, -2.1395, -1.4509, -0.7538, -2.6381, -0.8078, -2.1054, -2.6703, -1.1108, -3.3867, -1.7774, -1.8426, -1.9473, -1.3293, -1.3273, -1.3490, -1.9842, -2.5357, -2.2161, -0.8800, -1.5412, -1.8003, -2.7603, -0.8606, -2.0066, -1.8342, -2.2741, -1.8348, -1.5833, -0.9877, -3.5196, -2.3361, -0.9124, -0.9307, -2.5531, -1.4862, -1.2153, -1.4453, -3.4462, -1.5625, -2.6455, -1.4153, -1.3079, -1.1568, -2.2897}; std::vector<int64_t> targetsHostData = { 1, 2, 1, 1, 2, 4, 1, 2, 2, 2, 2, 2, 2, 3, 4, 2, 1, 4, 3, 1, 4, 4, 1, 4, 2, 2, 2, 3}; std::vector<float> negLoglikelihoodHostData = {10.1999, 16.1340, 14.9006, 9.3596}; std::vector<float> logAlphaHostData = { -1.0894, -2.7162, -99999, -99999, -99999, -99999, -99999, -99999, -99999, -99999, -99999, -99999, -99999, -99999, -99999, -99999, -4.8653, -2.2842, -6.4921, -3.9711, -99999, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, -5.2121, -4.7967, -2.6162, -4.1742, -4.3179, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, -6.0987, -5.0438, -3.3957, -6.7671, -4.4369, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, -7.3173, -5.5735, -4.4384, -6.1313, -5.5627, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, -8.9557, -6.6720, -5.7981, -6.1973, -6.7523, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, -10.9664, -8.6661, -7.4600, -6.3671, -7.7544, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, -14.5183, -10.6106, -10.7501, -7.8722, -9.6961, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, -16.6026, -11.2422, -12.0691, -9.1833, -9.8069, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, -18.5078, -12.0705, -12.7846, -11.1988, -10.6593, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -2.0684, -2.0866, -99999, -99999, -99999, -99999, -99999,-99999, -99999, -99999, -99999, -99999, -99999, -99999,-99999, -99999, -3.4510, -3.2370, -3.4692, -99999, -99999, -99999, -99999,-99999, -99999, -99999, -99999, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -4.4051, -4.7144, -3.6073, -5.5385, -99999, -99999, -99999,-99999, -99999, -99999, -99999, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -5.6836, -7.1669, -4.6003, -6.7841, -6.8170, -99999, -99999,-99999, -99999, -99999, -99999, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -7.9975, -8.2040, -6.8402, -7.2185, -8.4212, -9.5419, -99999,-99999, -99999, -99999, -99999, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -11.0430, -9.9362, -9.6580, -8.8523, -10.0013, -10.6729, -12.5874,-99999, -99999, -99999, -99999, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -12.3302, -11.3209, -10.3815, -10.1533, -9.8642, -11.2589, -11.8226,-14.2577, -99999, -99999, -99999, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -13.7904, -12.5855, -11.5118, -11.1431, -10.7654, -11.2181, -12.2686,-13.3140, -15.7179, -99999, -99999, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -15.3165, -14.0400, -12.7439, -12.3341, -11.7695, -11.9899, -12.4443,-13.6840, -14.7536, -17.4346, -99999, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -18.2273, -15.2555, -15.4129, -13.2866, -14.2301, -12.6421, -14.4091,-13.6517, -16.2998, -16.1490, -20.3454, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -2.4423, -2.5942, -99999, -99999, -99999, -99999, -99999,-99999, -99999, -99999, -99999, -99999, -99999, -99999,-99999, -99999, -4.0739, -3.6831, -4.2258, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -7.6125, -6.4925, -6.7635, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -9.1100, -8.3040, -7.4232, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -9.8243, -9.0682, -7.7908, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -12.2918, -10.3758, -10.0124, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -14.7551, -11.3089, -11.9478, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -16.2228, -12.5289, -12.3528, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -17.7075, -14.2718, -13.2285, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -19.9731, -16.2750, -15.1923, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -2.4670, -0.7248, -99999, -99999, -99999, -99999, -99999,-99999, -99999, -99999, -99999, -99999, -99999, -99999,-99999, -99999, -4.3939, -2.4581, -2.6517, -2.9598, -99999, -99999, -99999,-99999, -99999, -99999, -99999, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -5.5419, -5.5142, -3.0051, -3.3784, -4.1078, -6.1507, -99999,-99999, -99999, -99999, -99999, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -7.8955, -6.9286, -5.2805, -4.5115, -5.3385, -5.0374, -8.5043,-7.6488, -99999, -99999, -99999, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -9.5920, -7.5617, -6.8010, -6.0444, -5.8452, -4.7597, -6.7031,-7.3228, -9.3453, -99999, -99999, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -12.6943, -9.8527, -9.5199, -8.2901, -8.3490, -6.6950, -7.7281,-5.8361, -10.3008, -10.6208, -99999, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -15.7486, -12.5670, -12.0336, -8.5306, -10.6803, -9.1337, -9.4448,-6.5472, -8.8790, -10.9199, -13.6751, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -16.9650, -13.7373, -12.7884, -10.0734, -9.6368, -9.2326, -9.8004,-8.6463, -7.6709, -10.9785, -12.0746, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -17.8853, -15.3655, -13.3814, -14.2154, -10.0586, -10.1583, -9.7039,-9.8935, -8.2713, -9.5090, -11.6105, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, -20.1310, -17.9262, -15.4983, -15.0687, -12.2888, -12.0440, -11.4581,-10.2538, -10.3368, -9.4675, -11.6393, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000}; std::vector<float> outHostData = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // 创建gradOut aclTensor ret = CreateAclTensor(gradOutHostData, gradOutShape, &gradOutDeviceAddr, aclDataType::ACL_FLOAT, &gradOut); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建logProbs aclTensor ret = CreateAclTensor(logProbsHostData, logProbsShape, &logProbsDeviceAddr, aclDataType::ACL_FLOAT, &logProbs); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建targets aclTensor ret = CreateAclTensor(targetsHostData, targetsShape, &targetsDeviceAddr, aclDataType::ACL_INT64, &targets); CHECK_RET(ret == ACL_SUCCESS, return ret); std::vector<int64_t> inputLengthsSizeData = {10,10,10,10}; inputLengths = aclCreateIntArray(inputLengthsSizeData.data(), 4); CHECK_RET(inputLengths != nullptr, return ACL_ERROR_BAD_ALLOC); std::vector<int64_t> targetLengthsSizeData = {2, 3, 1, 5}; targetLengths = aclCreateIntArray(targetLengthsSizeData.data(), 4); CHECK_RET(targetLengths != nullptr, return ACL_ERROR_BAD_ALLOC); // 创建negLoglikelihood aclTensor ret = CreateAclTensor(negLoglikelihoodHostData, negLoglikelihoodShape, &negLoglikelihoodDeviceAddr, aclDataType::ACL_FLOAT, &negLoglikelihood); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建logAlpha aclTensor ret = CreateAclTensor(logAlphaHostData, logAlphaShape, &logAlphaDeviceAddr, aclDataType::ACL_FLOAT, &logAlpha); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API,需要修改为具体的HostApi uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnCtcLossBackward第一段接口 ret = aclnnCtcLossBackwardGetWorkspaceSize(gradOut, logProbs, targets, inputLengths, targetLengths, negLoglikelihood, logAlpha, 0, false, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCtcLossBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;); } // 调用aclnnCtcLossBackward第二段接口 ret = aclnnCtcLossBackward(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCtcLossBackward failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的out值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outShape); std::vector<float> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("out result[%ld] is: %f\n", i, resultData[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyTensor(gradOut); aclDestroyTensor(logProbs); aclDestroyTensor(targets); aclDestroyIntArray(inputLengths); aclDestroyIntArray(targetLengths); aclDestroyTensor(negLoglikelihood); aclDestroyTensor(logAlpha); aclDestroyTensor(out); return 0; }