每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
算子功能:算子GridSampler2D(aclnnGridSampler2D)的反向计算。
aclnnStatus aclnnGridSampler2DBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *input, const aclTensor *grid, int64_t interpolationMode, int64_t paddingMode, bool alignCorners, aclTensor *inputGrad, aclTensor *gridGrad, uint64_t *workspaceSize, aclOpExecutor **executor)
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
aclnnStatus aclnnGridSampler2DBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
返回aclnnStatus状态码,具体参见aclnn返回码。
无
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/level2/aclnn_grid_sampler2d_backward.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,acl初始化 auto ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. (固定写法)device/context/stream初始化,参考acl对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 int64_t interpolationMode = 0; int64_t paddingMode = 0; bool alignCorners = false; aclBoolArray* outputMask = nullptr; std::vector<int64_t> gradOutputShape = {1, 1, 3, 3}; std::vector<int64_t> inputShape = {1, 1, 5, 8}; std::vector<int64_t> gridShape = {1, 3, 3, 2}; std::vector<int64_t> inputGradShape = {1, 1, 5, 8}; std::vector<int64_t> gridGradShape = {1, 3, 3, 2}; void* gradOutputDeviceAddr = nullptr; void* inputDeviceAddr = nullptr; void* gridDeviceAddr = nullptr; void* inputGradDeviceAddr = nullptr; void* gridGradDeviceAddr = nullptr; aclTensor* gradOutput = nullptr; aclTensor* input = nullptr; aclTensor* grid = nullptr; aclTensor* inputGrad = nullptr; aclTensor* gridGrad = nullptr; std::vector<float> gradOutputHostData = {1, 1, 1, 1, 1, 1, 1, 1, 1}; std::vector<float> inputHostData = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}; std::vector<float> gridHostData = {-1, -1, 0, -1, 1, -1, -1, 0, 0, 0, 1, 0, -1, 1, 0, 1, 1, 1}; std::vector<float> inputGradHostData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; std::vector<float> gridGradHostData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; bool maskValue[2] = {true, true}; outputMask = aclCreateBoolArray(&(maskValue[0]), 2); // 创建gradOutput aclTensor ret = CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr, aclDataType::ACL_FLOAT, &gradOutput); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建input aclTensor ret = CreateAclTensor(inputHostData, inputShape, &inputDeviceAddr, aclDataType::ACL_FLOAT, &input); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建grid aclTensor ret = CreateAclTensor(gridHostData, gridShape, &gridDeviceAddr, aclDataType::ACL_FLOAT, &grid); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建inputGrad aclTensor ret = CreateAclTensor(inputGradHostData, inputGradShape, &inputGradDeviceAddr, aclDataType::ACL_FLOAT, &inputGrad); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建gridGrad aclTensor ret = CreateAclTensor(gridGradHostData, gridGradShape, &gridGradDeviceAddr, aclDataType::ACL_FLOAT, &gridGrad); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API,需要修改为具体的Api名称 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnGridSampler2DBackward第一段接口 ret = aclnnGridSampler2DBackwardGetWorkspaceSize(gradOutput, input, grid, interpolationMode, paddingMode, alignCorners, outputMask, inputGrad, gridGrad, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnGridSampler2DBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnGridSampler2DBackward第二段接口 ret = aclnnGridSampler2DBackward(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnGridSampler2DBackward failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto inputGradSize = GetShapeSize(inputGradShape); std::vector<float> inputGradResultData(inputGradSize, 0); ret = aclrtMemcpy(inputGradResultData.data(), inputGradResultData.size() * sizeof(inputGradResultData[0]), inputGradDeviceAddr, inputGradSize * sizeof(inputGradResultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy inputGradResultData from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < inputGradSize; i++) { LOG_PRINT("inputGradResultData[%ld] is: %f\n", i, inputGradResultData[i]); } auto gridGradSize = GetShapeSize(gridGradShape); std::vector<float> gridGradResultData(gridGradSize, 0); ret = aclrtMemcpy(gridGradResultData.data(), gridGradResultData.size() * sizeof(gridGradResultData[0]), gridGradDeviceAddr, gridGradSize * sizeof(gridGradResultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy gridGradResultData from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < gridGradSize; i++) { LOG_PRINT("gridGradResultData[%ld] is: %f\n", i, gridGradResultData[i]); } // 6. 释放aclTensor和aclBoolArray,需要根据具体API的接口定义修改 aclDestroyTensor(gradOutput); aclDestroyTensor(input); aclDestroyTensor(grid); aclDestroyTensor(inputGrad); aclDestroyTensor(gridGrad); aclDestroyBoolArray(outputMask); return 0; }