矩阵的下三角形部分指对角线下面(包含对角线)的元素,参数diagonal用于控制对角线,主对角线是一组索引{(i, i)} for i∈[0,min{d1, d2}−1],其中d1、d2是矩阵的维度。
tensor([[-0.0253, -0.4648, -0.7047], [-0.2689, -0.7505, -0.0111], [-1.1890, 1.0124, 1.9871]]) // 如果diagonal=0,Tril后计算结果为: tensor([[-0.0253, 0.0000, 0.0000], [-0.2689, -0.7505, 0.0000], [-1.1890, 1.0124, 1.9871]]) // 如果diagonal=1,Tril后计算结果为: tensor([[-0.0253, -0.4648, 0.0000], [-0.2689, -0.7505, -0.0111], [-1.1890, 1.0124, 1.9871]]) // 如果diagonal=-1,Tril后计算结果为: tensor([[ 0.0000, 0.0000, 0.0000], [-0.2689, 0.0000, 0.0000], [-1.1890, 1.0124, 0.0000]])
aclnnStatus aclnnTrilGetWorkspaceSize(const aclTensor *self, int64_t diagonal, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
aclnnStatus aclnnTril(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
返回aclnnStatus状态码,具体参见aclnn返回码。
aclnnStatus aclnnInplaceTrilGetWorkspaceSize(const aclTensor *selfRef, int64_t diagonal, uint64_t *workspaceSize, aclOpExecutor **executor)
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
aclnnStatus aclnnInplaceTril(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
返回aclnnStatus状态码,具体参见aclnn返回码。
无
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/level2/aclnn_tril.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shape_size = 1; for (auto i : shape) { shape_size *= i; } return shape_size; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,acl初始化 auto ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. 固定写法,device/context/stream初始化, 参考acl对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); // check根据自己的需要处理 CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口定义构造 std::vector<int64_t> selfShape = {3, 3}; std::vector<int64_t> outShape = {3, 3}; void* selfDeviceAddr = nullptr; void* outDeviceAddr = nullptr; aclTensor* self = nullptr; aclTensor* out = nullptr; std::vector<int> selfHostData = {1, 2, 3, 4, 5, 6, 7, 8, 9}; std::vector<int> outHostData ={1, 2, 3, 4, 5, 6, 7, 8, 9}; int diagonal = 0; // 创建self aclTensor ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_INT32, &self); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_INT32, &out); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API,需要修改为具体的HostApi uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnTril第一段接口 ret = aclnnTrilGetWorkspaceSize(self, diagonal, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTrilGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;); } // 调用aclnnTril第二段接口 ret = aclnnTril(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTril failed. ERROR: %d\n", ret); return ret); // 4. 固定写法,同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outShape); std::vector<int> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(int), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %d\n", i, resultData[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyTensor(self); aclDestroyTensor(out); return 0; }