torch_npu.npu_fused_attention_score(Tensor query_layer, Tensor key_layer, Tensor value_layer, Tensor attention_mask, Scalar scale, float keep_prob, bool query_transpose=False, bool key_transpose=False, bool bmm_score_transpose_a=False, bool bmm_score_transpose_b=False, bool value_transpose=False, bool dx_transpose=False) -> Tensor
实现“Transformer attention score”的融合计算逻辑,主要将matmul、transpose、add、softmax、dropout、batchmatmul、permute等计算进行了融合。
输入tensor的格式编号必须均为29,数据类型为FP16。
>>> import torch >>> import torch_npu >>> query_layer = torch_npu.npu_format_cast(torch.rand(24, 16, 512, 64).npu() , 29).half() >>> query_layer = torch_npu.npu_format_cast(torch.rand(24, 16, 512, 64).npu(), 29).half() >>> key_layer = torch_npu.npu_format_cast(torch.rand(24, 16, 512, 64).npu(), 29).half() >>> value_layer = torch_npu.npu_format_cast(torch.rand(24, 16, 512, 64).npu(), 29).half() >>> attention_mask = torch_npu.npu_format_cast(torch.rand(24, 16, 512, 512).npu(), 29).half() >>> scale = 0.125 >>> keep_prob = 0.5 >>> context_layer = torch_npu.npu_fused_attention_score(query_layer, key_layer, value_layer, attention_mask, scale, keep_prob) >>> print(context_layer) tensor([[0.5063, 0.4900, 0.4951, ..., 0.5493, 0.5249, 0.5400], [0.4844, 0.4724, 0.4927, ..., 0.5176, 0.4702, 0.4790], [0.4683, 0.4771, 0.5054, ..., 0.4917, 0.4614, 0.4739], ..., [0.5137, 0.5010, 0.5078, ..., 0.4656, 0.4592, 0.5034], [0.5425, 0.5732, 0.5347, ..., 0.5054, 0.5024, 0.4924],