torch_npu.utils.save_async(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True, model=None)
异步保存一个对象到一个硬盘文件上。
input = torch.tensor([1.,2.,3.,4.]).npu() torch_npu.utils.save_async(input, "save_tensor.pt") model = nn.Sequential( nn.Linear(100, 50), nn.ReLU(), nn.Linear(50, 20), nn.ReLU(), nn.Linear(20, 5), nn.ReLU() ) model = model.npu() criterion = nn.CrossEntropyLoss() optimerizer = optim.SGD(model.parameters(), lr=0.01) for epoch in range(3): for step in range(3): input_data = torch.ones(6400, 100).npu() labels = torch.randint(0, 5, (6400,)).npu() outputs = model(input_data) loss = criterion(outputs, labels) optimerizer.zero_grad() loss.backward() optimerizer.step() save_path = os.path.join(f"model_{epoch}_{step}.path") torch_npu.utils.save_async(model, save_path, model=model)