下载
中文
注册

aclnnMultiScaleDeformableAttnFunction

支持的产品型号

  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口原型

每个算子分为两段式接口,必须先调用“aclnnMultiScaleDeformableAttnFunctionGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMultiScaleDeformableAttnFunction”接口执行计算。

  • aclnnStatus aclnnMultiScaleDeformableAttnFunctionGetWorkspaceSize(const aclTensor *value, const aclTensor *spatialShape, const aclTensor *levelStartIndex, const aclTensor *location, const aclTensor *attnWeight, aclTensor *output, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnMultiScaleDeformableAttnFunction(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 功能描述: MultiScaleDeformableAttention算子功能主要通过采样位置(sample location)、注意力权重(attention weights)、映射后的value特征、多尺度特征起始索引位置、多尺度特征图的空间大小(便于将采样位置由归一化的值变成绝对位置)等参数来遍历不同尺寸特征图的不同采样点。

aclnnMultiScaleDeformableAttnFunctionGetWorkspaceSize

  • 参数说明

    • value(aclTensor*, 计算输入):特征图的特征值,Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16,shape为(bs, spatial_size, mum_heads, channels),支持非连续的Tensor数据格式支持ND
    • spatialShape(aclTensor*, 计算输入):存储每个尺度特征图的高和宽,Device侧的aclTensor,数据类型支持INT32、INT64,shape为(num_levels, 2),支持非连续的Tensor数据格式支持ND
    • levelStartIndex(aclTensor*, 计算输入):每张特征图的起始索引,Device侧的aclTensor,数据类型支持INT32、INT64,shape为(num_levels,),支持非连续的Tensor数据格式支持ND
    • location(aclTensor*, 计算输入):采样点位置tensor,存储每个采样点的坐标位置,Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16,数据类型需要和value保持一致,shape为(bs, num_queries, num_heads, num_levels, num_points, 2),支持非连续的Tensor数据格式支持ND
    • attnWeight(aclTensor*, 计算输入):采样点权重tensor,Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16,数据类型需要和value保持一致,shape为(bs, num_queries, num_heads, num_levels, num_points),支持非连续的Tensor数据格式支持ND
    • output(aclTensor*, 计算输入):算子计算输出,Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16,数据类型需要和value保持一致,shape为(bs, num_queries, num_heads, channels),支持非连续的Tensor数据格式支持ND
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    返回161001(ACLNN_ERR_PARAM_NULLPTR): 1. 传入的输入或输出是空指针。
    返回161002(ACLNN_ERR_PARAM_INVALID): 1. 输入和输出的数据类型不在支持的范围之内。
                                          2. 输入输出数据类型不一致。
                                          3. value的shape不是4维。
                                          4. spatialShape的shape不是2维。
                                          5. levelStartIndex的shape不是1维。
                                          6. location的shape不是6维。
                                          7. attnWeight的shape不是5维。
                                          8. spatialShape的最后一轴不是2。
                                          9. location的最后一轴不是2。
                                          10. 不满足接口约束与限制的情况。

aclnnMultiScaleDeformableAttnFunction

  • 参数说明

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnMultiScaleDeformableAttnFunctionGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

channels % 8 == 0,且channels<=256 32 <= num_queries < 500000 num_level <= 16 mum_heads <= 16 num_points <= 16

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_multi_scale_deformable_attn_function.h"

#define CHECK_RET(cond, return_expr) \
    do {                               \
        if (!(cond)) {                   \
        return_expr;                   \
        }                                \
    } while (0)

#define LOG_PRINT(message, ...)     \
    do {                              \
        printf(message, ##__VA_ARGS__); \
    } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
    int64_t shapeSize = 1;
    for (auto i : shape) {
        shapeSize *= i;
  }
    return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
    // 固定写法,AscendCL初始化
    auto ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
       strides[i] = shape[i + 1] * strides[i + 1];
    }

    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                              shape.data(), shape.size(), *deviceAddr);
    return 0;
}

int main() {
    // 1.(固定写法)device/stream初始化, 参考acl对外接口列表
    // 根据自己的实际device填写deviceId
    int32_t deviceId = 0;
    aclrtStream stream;
    auto ret = Init(deviceId, &stream);
    // check根据自己的需要处理
    CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    // 2.构造输入与输出,需要根据API的接口自定义构造
    std::vector<int64_t> valueShape = {1, 1, 1, 8};
    std::vector<int64_t> spatialShapeShape = {1, 2};
    std::vector<int64_t> levelStartIndexShape = {1};
    std::vector<int64_t> locationShape = {1, 32, 1, 1, 1, 2};
    std::vector<int64_t> attnWeightShape = {1, 32, 1, 1, 1};
    std::vector<int64_t> outputShape = {1, 32, 8};
    void* valueDeviceAddr = nullptr;
    void* spatialShapeDeviceAddr = nullptr;
    void* levelStartIndexDeviceAddr = nullptr;
    void* locationDeviceAddr = nullptr;
    void* attnWeightDeviceAddr = nullptr;
    void* outputDeviceAddr = nullptr;
    aclTensor* value = nullptr;
    aclTensor* spatialShape = nullptr;
    aclTensor* levelStartIndex = nullptr;
    aclTensor* location = nullptr;
    aclTensor* attnWeight = nullptr;
    aclTensor* output = nullptr;
    std::vector<float> valueHostData = {1, 1, 1, 1, 1, 1, 1, 1};
    std::vector<float> spatialShapeHostData = {1, 1};
    std::vector<float> levelStartIndexHostData = {0};
    std::vector<float> locationHostData(GetShapeSize(GetShapeSize), 0);
    std::vector<float> attnWeightHostData = {GetShapeSize(attnWeightShape), 1};
    std::vector<float> outputHostData = {GetShapeSize(outputShape), 1};
    // value aclTensor
    ret = CreateAclTensor(valueHostData, valueShape, &valueDeviceAddr, aclDataType::ACL_FLOAT, &value);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建spatialShape aclTensor
    ret = CreateAclTensor(spatialShapeHostData, spatialShapeShape, &spatialShapeDeviceAddr, aclDataType::ACL_INT32, &spatialShape);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建levelStartIndex aclTensor
    ret = CreateAclTensor(levelStartIndexHostData, levelStartIndexShape, &levelStartIndexDeviceAddr, aclDataType::ACL_INT32, &levelStartIndex);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建location aclTensor
    ret = CreateAclTensor(locationHostData, locationShape, &locationDeviceAddr, aclDataType::ACL_FLOAT, &location);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建attnWeight aclTensor
    ret = CreateAclTensor(attnWeightHostData, attnWeightShape, &attnWeightDeviceAddr, aclDataType::ACL_FLOAT, &attnWeight);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建output aclTensor
    ret = CreateAclTensor(outputHostData, outputShape, &outputDeviceAddr, aclDataType::ACL_FLOAT, &output);
    CHECK_RET(ret == ACL_SUCCESS, return ret);

    // 3.调用CANN算子库API,需要修改为具体的API
    uint64_t workspaceSize = 0;
    aclOpExecutor* executor;
    // 调用aclnnAdd第一段接口
    ret = aclnnMultiScaleDeformableAttnFunctionGetWorkspaceSize(value, spatialShape, levelStartIndex, location, attnWeight, output, 
                                                                &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMultiScaleDeformableAttnFunctionGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    void* workspaceAddr = nullptr;
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
    }
    // 调用aclnnAdd第二段接口
    ret = aclnnMultiScaleDeformableAttnFunction(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMultiScaleDeformableAttnFunction failed. ERROR: %d\n", ret); return ret);
    // 4.(固定写法)同步等待任务执行结束
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    // 5.获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
    auto size = GetShapeSize(outputShape);
    std::vector<float> resultData(size, 0);
    ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outputDeviceAddr, size * sizeof(float),
                      ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    for (int64_t i = 0; i < size; i++) {
        LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
    }

    // 6.释放aclTensor和aclScalar,需要根据具体API的接口定义修改
    aclDestroyTensor(value);
    aclDestroyTensor(spatialShape);
    aclDestroyTensor(levelStartIndex);
    aclDestroyTensor(location);
    aclDestroyTensor(attnWeight);
    aclDestroyTensor(output);

    // 7.释放device资源,需要根据具体API的接口定义修改
    aclrtFree(valueDeviceAddr);
    aclrtFree(spatialShapeDeviceAddr);
    aclrtFree(levelStartIndexDeviceAddr);
    aclrtFree(locationDeviceAddr);
    aclrtFree(attnWeightDeviceAddr);
    aclrtFree(outputDeviceAddr);
    if (workspaceSize > 0) {
        aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(stream);
    aclrtResetDevice(deviceId);
    aclFinalize();
    return 0;
}