下载
中文
注册

aclnnTransMatmulWeight

支持的产品型号

  • Atlas 推理系列产品。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口原型

每个算子分为两段式接口,必须先调用“aclnnTransMatmulWeightGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnTransMatmulWeight”接口执行计算。

  • aclnnStatus aclnnTransMatmulWeightGetWorkspaceSize(aclTensor *mmWeightRef, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnTransMatmulWeight(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

需要和aclnnCalculateMatmulWeightSizeaclnnCalculateMatmulWeightSizeV2接口配套使用,用于创建一个对于Matmul算子计算性能亲和的weight Tensor。与aclnnCalculateMatmulWeightSize配套时仅支持FLOAT16, BFLOAT16数据类型;与aclnnCalculateMatmulWeightSizeV2配套时仅支持FLOAT16, INT8数据类型。

aclnnTransMatmulWeightGetWorkspaceSize

  • 参数说明:

    • mmWeightRef(aclTensor*, 计算输入|计算输出):表示一个待处理的Matmul的weightTensor,Device侧的aclTensor,格式是正常的ND输入,shape是正常的训练结果的Shape。经过此接口后刷新成预处理后的Matmul weightTensor,格式根据亲和性进行ND或私有格式的转换。
      • Atlas 推理系列产品:数据类型支持FLOAT16、INT8。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持FLOAT16、INT8、BFLOAT16。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    161001(ACLNN_ERR_PARAM_NULLPTR):1. 输入是空指针。
    161002(ACLNN_ERR_PARAM_INVALID):原因有:
      - 输入Tensor shape的维度不满足要求
      - 输入Tensor的Format不满足要求
      - 输入Tensor的Dtype不满足要求
      - 不支持空Tensor输入

aclnnTransMatmulWeight

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小, 由第一段接口aclnnTransMatmulWeightGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器, 包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

  • 不支持cache缓存能力。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_mm.h"
#include "aclnnop/aclnn_trans_matmul_weight.h"
#include "aclnnop/aclnn_cast.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

template <typename T>
int CreateAclTensorWeight(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                          aclDataType dataType, aclTensor** tensor) {
  auto size = static_cast<uint64_t>(GetShapeSize(shape));

  const aclIntArray* mat2Size = aclCreateIntArray(shape.data(), shape.size());
  auto ret = aclnnCalculateMatmulWeightSize(mat2Size, &size);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCalculateMatmulWeightSize failed. ERROR: %d\n", ret); return ret);
  size *= sizeof(T);

  // 调用aclrtMalloc申请device侧内存
  ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  std::vector<int64_t> storageShape;
  storageShape.push_back(GetShapeSize(shape));

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            storageShape.data(), storageShape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {16, 32};
  std::vector<int64_t> mat2Shape = {32, 16};
  std::vector<int64_t> outShape = {16, 16};
  void* selfDeviceAddr = nullptr;
  void* mat2DeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* mat2 = nullptr;
  aclTensor* out = nullptr;
  std::vector<int16_t> selfHostData(512, 1);
  std::vector<int16_t> mat2HostData(512, 1);
  std::vector<int16_t> outHostData(256, 0);
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT16, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建other aclTensor
  ret = CreateAclTensorWeight(mat2HostData, mat2Shape, &mat2DeviceAddr, aclDataType::ACL_FLOAT16, &mat2);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的Api名称
  int8_t cubeMathType = 1;
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用TransWeight
  ret = aclnnTransMatmulWeightGetWorkspaceSize(mat2, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeightGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnTransMatmulWeight第二段接口
  ret = aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeight failed. ERROR: %d\n", ret); return ret);
  // 调用aclnnMm第一段接口
  uint64_t workspaceSizeMm = 0;
  ret = aclnnMmGetWorkspaceSize(self, mat2, out, cubeMathType, &workspaceSizeMm, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMmGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存

  void* workspaceAddrMm = nullptr;
  if (workspaceSizeMm > 0) {
    ret = aclrtMalloc(&workspaceAddrMm, workspaceSizeMm, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnMm第二段接口
  ret = aclnnMm(workspaceAddrMm, workspaceSizeMm, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMm failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(mat2);
  aclDestroyTensor(out);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(mat2DeviceAddr);
  aclrtFree(outDeviceAddr);
  aclrtFree(outDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  if (workspaceSizeMm > 0) {
    aclrtFree(workspaceAddrMm);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}