下载
中文
注册

aclnnLayerNorm&aclnnLayerNormWithImplMode

支持的产品型号

  • Atlas 训练系列产品
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品
  • Atlas 200I/500 A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnLayerNormGetWorkspaceSize”或者“aclnnLayerNormWithImplModeGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnLayerNorm”或者“aclnnLayerNormWithImplMode”接口执行计算。

  • aclnnStatus aclnnLayerNormGetWorkspaceSize(const aclTensor *input, const aclIntArray *normalizedShape, const aclTensor *weightOptional, const aclTensor *biasOptional, double eps, aclTensor *out, aclTensor *meanOutOptional, aclTensor *rstdOutOptional, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnLayerNorm(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
  • aclnnStatus aclnnLayerNormWithImplModeGetWorkspaceSize(const aclTensor *input, const aclIntArray *normalizedShape, const aclTensor *weightOptional, const aclTensor *biasOptional, double eps, aclTensor *out, aclTensor *meanOutOptional, aclTensor *rstdOutOptional, int32_t implMode, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnLayerNormWithImplMode(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:对指定层进行均值为0、标准差为1的归一化计算。
  • 计算公式:out=xE[x]Var[x]+epsw+bout = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + eps}} * w + b 其中,E[input]表示输入的均值,Var[input]表示输入的方差。

aclnnLayerNormGetWorkspaceSize

  • 参数说明:

    • input(aclTensor*,计算输入):公式中的输入x,shape为[A1,...,Ai,R1,...,Rj],其中A1至Ai表示无需norm的维度,R1至Rj表示需norm的维度。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品Atlas 200I/500 A2 推理产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • normalizedShape(aclIntArray*,计算输入):表示需要进行norm计算的维度,数据类型支持INT64,shape为[R1,...,Rj], 长度小于等于输入input的长度,不支持为空。

    • weightOptional(aclTensor*,计算输入):公式中的输入w,可选参数。weightOptional非空时,数据类型与输入input一致或为FLOAT类型,且当biasOptional存在时weightOptional与biasOptional的数据类型相同。weightOptional为空时,接口内部会构造一个shape为[R1,...,Rj],数据全为1的tensor,当biasOptional存在时weightOptional与biasOptional的数据类型相同,biasOptional不存在时weightOptional与输入input的数据类型相同。shape与normalizedShape相等,为[R1,...,Rj]。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品Atlas 200I/500 A2 推理产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • biasOptional(aclTensor*,计算输入):公式中的输入b,可选参数。biasOptional非空时,数据类型与输入input一致或为FLOAT类型,且当weightOptional存在时biasOptional与weightOptional的数据类型相同。biasOptional为空时,接口内部会构造一个shape为[R1,...,Rj],数据全为0的tensor,当weightOptional存在时biasOptional与weightOptional的数据类型相同,weightOptional不存在时biasOptional与输入input的数据类型相同。shape与normalizedShape相等,为[R1,...,Rj]。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品Atlas 200I/500 A2 推理产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • eps(double,计算输入):公式中的输入eps,用于规避除零计算,数据类型支持DOUBLE, 且需要可转换成与input相同的数据类型。

    • out(aclTensor*,计算输出):公式中的输出out,shape需要与input的shape相等,为[A1,...,Ai,R1,...,Rj]。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品Atlas 200I/500 A2 推理产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • meanOutOptional(aclTensor*,计算输出):可选参数。当rstdOutOptional存在时与rstdOutOptional的数据类型和shape相同,shape为[A1,...,Ai,1,...,1],Ai后共有j个1,与需要norm的轴长度保持相同。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品Atlas 200I/500 A2 推理产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • rstdOutOptional(aclTensor*,计算输出):可选参数。当meanOutOptional存在时与meanOutOptional的数据类型和shape相同,shape为[A1,...,Ai,1,...,1],Ai后共有j个1,与需要norm的轴长度保持相同。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品Atlas 200I/500 A2 推理产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。

    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的input、normalizedShape或out为空指针。
161002 (ACLNN_ERR_PARAM_INVALID): 1. input、normalizedShape、weightOptional(非空时)、biasOptional(非空时)、out、meanOutOptional(非空时)、rstdOutOptional(非空时),shape的维度超过8维。
                                  2. input、weightOptional(非空时)、biasOptional(非空时)、out、meanOutOptional(非空时)、rstdOutOptional(非空时),数据类型不在支持的范围内。
                                  3. normalizedShape维度小于1维。
                                  4. weightOptional非空且shape与normalizedShape不相等。
                                  5. biasOptional非空且shape与normalizedShape不相等。
                                  6. input的维度小于normalizedShape的维度。
                                  7. input的shape与normalizedShape右对齐时对应维度shape不相等。

aclnnLayerNorm

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。

    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnLayerNormGetWorkspaceSize获取。

    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。

    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

aclnnLayerNormWithImplModeGetWorkspaceSize

  • 参数说明:

    • input(aclTensor*,计算输入):公式中的输入x。shape为[A1,...,Ai,R1,...,Rj],其中A1至Ai表示无需norm的维度,R1至Rj表示需norm的维度。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品Atlas 200I/500 A2 推理产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • normalizedShape(aclIntArray*,计算输入):表示需要进行norm计算的维度,数据类型支持INT64,shape为[R1,...,Rj], 长度小于等于输入input的长度,不支持为空。

    • weightOptional(aclTensor*,计算输入):公式中的输入w,可选参数。weightOptional非空时,数据类型与输入input一致或为FLOAT类型,且当biasOptional存在时与biasOptional的数据类型相同。shape与normalizedShape相等,为[R1,...,Rj]。支持非连续的Tensor数据格式支持ND。weightOptional为空时,接口内部会构造一个shape为[R1,...,Rj],数据全为1的tensor,当biasOptional存在时与biasOptional的数据类型相同,biasOptional不存在时与输入input的数据类型相同。

      • Atlas 训练系列产品Atlas 200I/500 A2 推理产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • biasOptional(aclTensor*,计算输入):公式中的输入b,可选参数。biasOptional非空时,数据类型与输入input一致或为FLOAT类型,且当weightOptional存在时与weightOptional的数据类型相同。shape与normalizedShape相等,为[R1,...,Rj]。支持非连续的Tensor数据格式支持ND。biasOptional为空时,接口内部会构造一个shape为[R1,...,Rj],数据全为0的tensor,当weightOptional存在时与weightOptional的数据类型相同,weightOptional不存在时与输入input的数据类型相同。

      • Atlas 训练系列产品Atlas 200I/500 A2 推理产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • eps(double,计算输入):公式中的输入eps,用于规避除零计算,数据类型支持DOUBLE, 且需要可转换成与input相同的数据类型。

    • out(aclTensor*,计算输出):公式中的输出out,shape需要与input的shape相等,为[A1,...,Ai,R1,...,Rj]。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品Atlas 200I/500 A2 推理产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • meanOutOptional(aclTensor*,计算输出):可选参数,meanOutOptional非空时,当rstdOutOptional存在时与rstdOutOptional的数据类型和shape相同,shape为[A1,...,Ai,1,...,1],Ai后共有j个1,与需要norm的轴长度保持相同。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品Atlas 200I/500 A2 推理产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • rstdOutOptional(aclTensor*,计算输出):可选参数,rstdOutOptional非空时,当meanOutOptional存在时与meanOutOptional的数据类型和shape相同,shape为[A1,...,Ai,1,...,1],Ai后共有j个1,与需要norm的轴长度保持相同。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品Atlas 200I/500 A2 推理产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • implMode(int32_t, 计算输入):精度模式,用于指定kernel选择对应的计算模式,默认实现为高精度模式(0), 高性能模式分为高性能模式(1)/保持FLOAT16计算模式(2),高性能模式谨慎使用,有精度损失,保持FLOAT16计算模式仅支持所有输入同时为FLOAT16,且计算精度最低。

    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。

    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的input、normalizedShape或out为空指针。
161002 (ACLNN_ERR_PARAM_INVALID): 1. input、normalizedShape、weightOptional非空、biasOptional非空、out、meanOutOptional非空或rstdOutOptional非空时的shape超过8维。
                                  2. input、weightOptional非空、biasOptional非空、out、meanOut非空或rstdOut非空时的数据类型不在支持的范围内。
                                  3. normalizedShape维度小于1维。
                                  4. weightOptional非空且shape与normalizedShape不相等。
                                  5. biasOptional非空且shape与normalizedShape不相等。
                                  6. input的维度小于normalizedShape的维度。
                                  7. input的shape与normalizedShape右对齐时对应维度shape不相等。
                                  8. implMode的取值不在0,1和2范围内。
                                  9. implMode的取值为2且输入的数据类型不全部为FLOAT16。

aclnnLayerNormWithImplMode

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。

    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnLayerNormWithImplModeGetWorkspaceSize获取。

    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。

    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

  • aclnnLayerNorm示例:

    #include <iostream>
    #include <vector>
    #include "acl/acl.h"
    #include "aclnnop/aclnn_layer_norm.h"
    
    #define CHECK_RET(cond, return_expr) \
      do {                               \
        if (!(cond)) {                   \
          return_expr;                   \
        }                                \
      } while (0)
    
    #define LOG_PRINT(message, ...)     \
      do {                              \
        printf(message, ##__VA_ARGS__); \
      } while (0)
    
    int64_t GetShapeSize(const std::vector<int64_t>& shape) {
      int64_t shapeSize = 1;
      for (auto i : shape) {
        shapeSize *= i;
      }
      return shapeSize;
    }
    
    int Init(int32_t deviceId, aclrtStream* stream) {
      // 固定写法,AscendCL初始化
      auto ret = aclInit(nullptr);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
      ret = aclrtSetDevice(deviceId);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
      ret = aclrtCreateStream(stream);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
      return 0;
    }
    
    template <typename T>
    int CreateAclTensorMem(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr) {
      auto size = GetShapeSize(shape) * sizeof(T);
      auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
      ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
      return 0;
    }
    
    template <typename T>
    void aclCreateTensorP(const std::vector<T>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) {
      std::vector<int64_t> strides(shape.size(), 1);
      for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
      }
      *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                                shape.data(), shape.size(), *deviceAddr);
    }
    
    template <typename T>
    void aclCreateIntArrayP(const std::vector<T>& hostData, aclIntArray** intArray) {
      *intArray = aclCreateIntArray(hostData.data(), hostData.size());
    }
    
    int main() {
      // 1.(固定写法)device/stream初始化,参考AscendCL对外接口列表
      int32_t deviceId = 0;
      aclrtStream stream;
      auto ret = Init(deviceId, &stream);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    
      // 2. 构造输入与输出,需要根据API的接口自定义构造
      std::vector<int64_t> xShape = {1, 2, 32};
      std::vector<int64_t> normShape = {32};
      std::vector<int64_t> meanShape = {1, 2, 1};
      void* xDeviceAddr = nullptr;
      void* weightDeviceAddr = nullptr;
      void* biasDeviceAddr = nullptr;
      void* outDeviceAddr = nullptr;
      void* meanDeviceAddr = nullptr;
      void* rstdDeviceAddr = nullptr;
      aclTensor* x = nullptr;
      aclIntArray* norm = nullptr;
      aclTensor* weight = nullptr;
      aclTensor* bias = nullptr;
      aclTensor* out = nullptr;
      aclTensor* mean = nullptr;
      aclTensor* rstd = nullptr;
      std::vector<float> xHostData(64, 2.0);
      std::vector<int64_t> normData = {32};
      std::vector<float> weightHostData(32, 1.0);
      std::vector<float> biasHostData(32, 0.0);
      std::vector<float> outHostData(64, 0.0);
      std::vector<float> meanHostData(2, 0.0);
      std::vector<float> rstdHostData(2, 0.0);
      double eps = 1e-5;
        
      ret = CreateAclTensorMem(xHostData, xShape, &xDeviceAddr);
      CHECK_RET(ret == ACL_SUCCESS, return ret);
      ret = CreateAclTensorMem(weightHostData, normShape, &weightDeviceAddr);
      CHECK_RET(ret == ACL_SUCCESS, return ret);
      ret = CreateAclTensorMem(biasHostData, normShape, &biasDeviceAddr);
      CHECK_RET(ret == ACL_SUCCESS, return ret);
      ret = CreateAclTensorMem(outHostData, xShape, &outDeviceAddr);
      CHECK_RET(ret == ACL_SUCCESS, return ret);
      ret = CreateAclTensorMem(meanHostData, meanShape, &meanDeviceAddr);
      CHECK_RET(ret == ACL_SUCCESS, return ret);
      ret = CreateAclTensorMem(rstdHostData, meanShape, &rstdDeviceAddr);
      CHECK_RET(ret == ACL_SUCCESS, return ret);
        
      aclCreateTensorP(xShape, &xDeviceAddr, aclDataType::ACL_FLOAT, &x);
      aclCreateIntArrayP(normData, &norm);
      aclCreateTensorP(normShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight);
      aclCreateTensorP(normShape, &biasDeviceAddr, aclDataType::ACL_FLOAT, &bias);
      aclCreateTensorP(xShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
      aclCreateTensorP(meanShape, &meanDeviceAddr, aclDataType::ACL_FLOAT, &mean);
      aclCreateTensorP(meanShape, &rstdDeviceAddr, aclDataType::ACL_FLOAT, &rstd);
        
      // 3. 调用CANN算子库API,需要修改为具体的Api名称
      uint64_t workspaceSize = 0;
      aclOpExecutor* executor;
      // 调用aclnnLayerNorm第一段接口
      ret = aclnnLayerNormGetWorkspaceSize(x, norm, weight, bias, eps, out, mean, rstd, &workspaceSize, &executor);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLayerNormGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
      void* workspaceAddr = nullptr;
      if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
      }
      // 调用aclnnLayerNorm第二段接口
      ret = aclnnLayerNorm(workspaceAddr, workspaceSize, executor, stream);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLayerNorm failed. ERROR: %d\n", ret); return ret);
        
      // 4.(固定写法)同步等待任务执行结束
      ret = aclrtSynchronizeStream(stream);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
        
      // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
      auto size = GetShapeSize(xShape);
      std::vector<float> resultData(size, 0);
      ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                        size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy first result from device to host failed. ERROR: %d\n", ret); return ret);
      for (int64_t i = 0; i < size; i++) {
        LOG_PRINT("out result[%ld] is: %f\n", i, resultData[i]);
      }
        
      auto size1 = GetShapeSize(meanShape);
      std::vector<float> resultData1(size1, 0);
      ret = aclrtMemcpy(resultData1.data(), resultData1.size() * sizeof(resultData1[0]), meanDeviceAddr,
                        size1 * sizeof(resultData1[0]), ACL_MEMCPY_DEVICE_TO_HOST);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy second result from device to host failed. ERROR: %d\n", ret); return ret);
      for (int64_t i = 0; i < size1; i++) {
        LOG_PRINT("mean result[%ld] is: %f\n", i, resultData1[i]);
      }
        
      auto size2 = GetShapeSize(meanShape);
      std::vector<float> resultData2(size2, 0);
      ret = aclrtMemcpy(resultData2.data(), resultData2.size() * sizeof(resultData2[0]), rstdDeviceAddr,
                        size2 * sizeof(resultData2[0]), ACL_MEMCPY_DEVICE_TO_HOST);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy last result from device to host failed. ERROR: %d\n", ret); return ret);
      for (int64_t i = 0; i < size2; i++) {
        LOG_PRINT("rstd result[%ld] is: %f\n", i, resultData2[i]);
      }
        
      // 6. 释放aclTensor和aclIntArray,需要根据具体API的接口定义修改
      aclDestroyTensor(x);
      aclDestroyIntArray(norm);
      aclDestroyTensor(weight);
      aclDestroyTensor(bias);
      aclDestroyTensor(out);
      aclDestroyTensor(mean);
      aclDestroyTensor(rstd);
        
      // 7. 释放device资源
      aclrtFree(xDeviceAddr);
      aclrtFree(weightDeviceAddr);
      aclrtFree(biasDeviceAddr);
      aclrtFree(outDeviceAddr);
      aclrtFree(meanDeviceAddr);
      aclrtFree(rstdDeviceAddr);
      if (workspaceSize > 0) {
        aclrtFree(workspaceAddr);
      }
      aclrtDestroyStream(stream);
      aclrtResetDevice(deviceId);
      aclFinalize();
      return 0;
    }
  • aclnnLayerNormWithImplMode示例:

    #include <iostream>
    #include <vector>
    #include "acl/acl.h"
    #include "aclnnop/aclnn_layer_norm.h"
    
    #define CHECK_RET(cond, return_expr) \
      do {                               \
        if (!(cond)) {                   \
          return_expr;                   \
        }                                \
      } while (0)
    
    #define LOG_PRINT(message, ...)     \
      do {                              \
        printf(message, ##__VA_ARGS__); \
      } while (0)
    
    int64_t GetShapeSize(const std::vector<int64_t>& shape) {
      int64_t shapeSize = 1;
      for (auto i : shape) {
        shapeSize *= i;
      }
      return shapeSize;
    }
    
    int Init(int32_t deviceId, aclrtStream* stream) {
      // 固定写法,AscendCL初始化
      auto ret = aclInit(nullptr);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
      ret = aclrtSetDevice(deviceId);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
      ret = aclrtCreateStream(stream);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
      return 0;
    }
    
    template <typename T>
    int CreateAclTensorMem(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr) {
      auto size = GetShapeSize(shape) * sizeof(T);
      // 调用aclrtMalloc申请device侧内存
      auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
      // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
      ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
      return 0;
    }
    
    template <typename T>
    void aclCreateTensorP(const std::vector<T>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) {
      // 计算连续tensor的strides
      std::vector<int64_t> strides(shape.size(), 1);
      for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
      }
    
      // 调用aclCreateTensor接口创建aclTensor
      *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                                shape.data(), shape.size(), *deviceAddr);
    }
    
    template <typename T>
    void aclCreateIntArrayP(const std::vector<T>& hostData, aclIntArray** intArray) {
      // 调用接口创建aclIntArray
      *intArray = aclCreateIntArray(hostData.data(), hostData.size());
    }
    
    int main() {
      // 1.(固定写法)device/stream初始化,参考AscendCL对外接口列表
      // 根据自己的实际device填写deviceId
      int32_t deviceId = 0;
      aclrtStream stream;
      auto ret = Init(deviceId, &stream);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    
      // 2. 构造输入与输出,需要根据API的接口自定义构造
      std::vector<int64_t> xShape = {1, 2, 32};
      std::vector<int64_t> normShape = {32};
      std::vector<int64_t> meanShape = {1, 2, 1};
      void* xDeviceAddr = nullptr;
      void* weightDeviceAddr = nullptr;
      void* biasDeviceAddr = nullptr;
      void* outDeviceAddr = nullptr;
      void* meanDeviceAddr = nullptr;
      void* rstdDeviceAddr = nullptr;
      aclTensor* x = nullptr;
      aclIntArray* norm = nullptr;
      aclTensor* weight = nullptr;
      aclTensor* bias = nullptr;
      aclTensor* out = nullptr;
      aclTensor* mean = nullptr;
      aclTensor* rstd = nullptr;
      std::vector<float> xHostData(64, 2.0);
      std::vector<int64_t> normData = {32};
      std::vector<float> weightHostData(32, 1.0);
      std::vector<float> biasHostData(32, 0.0);
      std::vector<float> outHostData(64, 0.0);
      std::vector<float> meanHostData(2, 0.0);
      std::vector<float> rstdHostData(2, 0.0);
      double eps = 1e-5;
      int32_t implMode = 0;
        
      // 创建x aclTensor
      ret = CreateAclTensorMem(xHostData, xShape, &xDeviceAddr);
      CHECK_RET(ret == ACL_SUCCESS, return ret);
      // 创建weight aclTensor
      ret = CreateAclTensorMem(weightHostData, normShape, &weightDeviceAddr);
      CHECK_RET(ret == ACL_SUCCESS, return ret);
      // 创建bias aclTensor
      ret = CreateAclTensorMem(biasHostData, normShape, &biasDeviceAddr);
      CHECK_RET(ret == ACL_SUCCESS, return ret);
      // 创建out aclTensor
      ret = CreateAclTensorMem(outHostData, xShape, &outDeviceAddr);
      CHECK_RET(ret == ACL_SUCCESS, return ret);
      // 创建mean aclTensor
      ret = CreateAclTensorMem(meanHostData, meanShape, &meanDeviceAddr);
      CHECK_RET(ret == ACL_SUCCESS, return ret);
      // 创建rstd aclTensor
      ret = CreateAclTensorMem(rstdHostData, meanShape, &rstdDeviceAddr);
      CHECK_RET(ret == ACL_SUCCESS, return ret);
        
      aclCreateTensorP(xShape, &xDeviceAddr, aclDataType::ACL_FLOAT, &x);
      aclCreateIntArrayP(normData, &norm);
      aclCreateTensorP(normShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight);
      aclCreateTensorP(normShape, &biasDeviceAddr, aclDataType::ACL_FLOAT, &bias);
      aclCreateTensorP(xShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
      aclCreateTensorP(meanShape, &meanDeviceAddr, aclDataType::ACL_FLOAT, &mean);
      aclCreateTensorP(meanShape, &rstdDeviceAddr, aclDataType::ACL_FLOAT, &rstd);
        
      // 3. 调用CANN算子库API,需要修改为具体的Api名称
      uint64_t workspaceSize = 0;
      aclOpExecutor* executor;
      // 调用aclnnLayerNormWithImplMode第一段接口
      ret = aclnnLayerNormWithImplModeGetWorkspaceSize(x, norm, weight, bias, eps, out, mean, rstd, implMode,
                                                       &workspaceSize, &executor);
      CHECK_RET(ret == ACL_SUCCESS,
                LOG_PRINT("aclnnLayerNormWithImplModeGetWorkspaceSize failed. ERROR: %d\n", ret);
                return ret);
      // 根据第一段接口计算出的workspaceSize申请device内存
      void* workspaceAddr = nullptr;
      if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
      }
      // 调用aclnnLayerNormWithImplMode第二段接口
      ret = aclnnLayerNormWithImplMode(workspaceAddr, workspaceSize, executor, stream);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLayerNormWithImplMode failed. ERROR: %d\n", ret); return ret);
        
      // 4.(固定写法)同步等待任务执行结束
      ret = aclrtSynchronizeStream(stream);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
        
      // 5. 获取输出的值,将device侧内存上结果拷贝至host侧,根据具体API修改
      auto size = GetShapeSize(xShape);
      std::vector<float> resultData(size, 0);
      ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                        size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy first result from device to host failed. ERROR: %d\n", ret); return ret);
      for (int64_t i = 0; i < size; i++) {
        LOG_PRINT("out result[%ld] is: %f\n", i, resultData[i]);
      }
        
      auto size1 = GetShapeSize(meanShape);
      std::vector<float> resultData1(size1, 0);
      ret = aclrtMemcpy(resultData1.data(), resultData1.size() * sizeof(resultData1[0]), meanDeviceAddr,
                        size1 * sizeof(resultData1[0]), ACL_MEMCPY_DEVICE_TO_HOST);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy second result from device to host failed. ERROR: %d\n", ret); return ret);
      for (int64_t i = 0; i < size1; i++) {
        LOG_PRINT("mean result[%ld] is: %f\n", i, resultData1[i]);
      }
        
      auto size2 = GetShapeSize(meanShape);
      std::vector<float> resultData2(size2, 0);
      ret = aclrtMemcpy(resultData2.data(), resultData2.size() * sizeof(resultData2[0]), rstdDeviceAddr,
                        size2 * sizeof(resultData2[0]), ACL_MEMCPY_DEVICE_TO_HOST);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy last result from device to host failed. ERROR: %d\n", ret); return ret);
      for (int64_t i = 0; i < size2; i++) {
        LOG_PRINT("rstd result[%ld] is: %f\n", i, resultData2[i]);
      }
        
      // 6. 释放aclTensor和aclIntArray,需要根据具体API的接口定义修改
      aclDestroyTensor(x);
      aclDestroyIntArray(norm);
      aclDestroyTensor(weight);
      aclDestroyTensor(bias);
      aclDestroyTensor(out);
      aclDestroyTensor(mean);
      aclDestroyTensor(rstd);
        
      // 7. 释放device资源
      aclrtFree(xDeviceAddr);
      aclrtFree(weightDeviceAddr);
      aclrtFree(biasDeviceAddr);
      aclrtFree(outDeviceAddr);
      aclrtFree(meanDeviceAddr);
      aclrtFree(rstdDeviceAddr);
      if (workspaceSize > 0) {
        aclrtFree(workspaceAddr);
      }
      aclrtDestroyStream(stream);
      aclrtResetDevice(deviceId);
      aclFinalize();
      return 0;
    }