aclnnMoeFinalizeRoutingV2Grad
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品 。
接口原型
每个算子分为两段式接口,必须先调用“aclnnMoeFinalizeRoutingV2GradGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMoeFinalizeRoutingV2Grad”接口执行计算。
aclnnStatus aclnnMoeFinalizeRoutingV2GradGetWorkspaceSize(const aclTensor *gradY, const aclTensor *expandedRowIdx, const aclTensor *expandedXOptional, const aclTensor *scalesOptional, const aclTensor *expertIdxOptional, const aclTensor *biasOptional, int64_t dropPadMode, int64_t activeNum, int64_t expertNum, int64_t expertCapacity, const aclTensor *gradExpandedXOut, const aclTensor *gradScalesOut, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnMoeFinalizeRoutingV2Grad(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
算子功能:aclnnMoeFinalizeRoutingV2的反向传播。
计算公式: R: batch * sequence
H: hidden
K: topk
gradY: (R, H)
expandedRowIdx: (R * K)
expandedXOptional: (R * K, H) or (activeNum, H) or (expertNum, expertCapacity, H)
scalesOptional: (R, K)
expertIdxOptional: (R, K)
biasOptional:(E, H)
i : 0 ~ R * K - 1
j : 0 ~ H
(1) scalesOptional为空指针:
(2) scalesOptional不为空指针, biasOptional为空指针:
(3) scalesOptional不为空指针, biasOptional不为空指针:
aclnnMoeFinalizeRoutingV2GradGetWorkspaceSize
参数说明:
- gradY(aclTensor*,计算输入):Device侧的aclTensor,表示MoeFinalizeRoutingV2正向输出y的导数,要求是一个2D的Tensor,shape为(R, H),数据类型支持FLOAT16、BFLOAT16、FLOAT32,数据格式要求为ND,支持非连续输入。
- expandedRowIdx(aclTensor*,计算输入):Device侧的aclTensor,表示token按照专家序排序索引,要求是一个1D的Tensor,shape为(R * K),当scalesOptional传入空指针的时候,K必须为1,当dropPadMode是0时,取值范围是[0, R * K - 1],且没有重复索引;当dropPadMode是1时,取值范围是[-1, expertNum * expertCapacity - 1],且除-1外,不允许有其它重复索引,数据类型支持INT32,数据格式要求为ND,支持非连续输入。
- expandedXOptional(aclTensor*,可选计算输入):Device侧的aclTensor,表示根据expertIdx进行扩展过的特征,当scalesOptional非空指针时,其也不能是空指针,当dropPadMode是0时,要求是一个2D的Tensor,当activeNum大于0且小于R * K时,shape为(activeNum, H),否则shape为(R * K, H);当dropPadMode是1时,要求是一个3D的Tensor,shape为(expertNum, expertCapacity, H),数据类型同gradY,支持FLOAT16、BFLOAT16、FLOAT32,数据格式要求为ND,支持非连续输入。
- scalesOptional(aclTensor*,可选计算输入):Device侧的aclTensor,表示对特征进行的缩放,要求是一个2D的Tensor,shape为(R, K),数据类型同gradY,支持FLOAT16、BFLOAT16、FLOAT32,数据格式要求为ND,支持非连续输入。
- expertIdxOptional(aclTensor*,可选计算输入):Device侧的aclTensor,表示每一个特征对应的处理专家索引,当biasOptional非空指针时,其也不能是空指针,要求是一个2D的Tensor,shape为(R, K),取值范围是[0, E - 1], E >= 1, 允许有重复索引,数据类型同expandedRowIdx,支持INT32,数据格式要求为ND,支持非连续输入。
- biasOptional(aclTensor*,可选计算输入):Device侧的aclTensor,表示对特征进行的偏移,要求是一个2D的Tensor,shape为(E, H),数据类型同gradY,支持FLOAT16、BFLOAT16、FLOAT32,数据格式要求为ND,支持非连续输入。
- dropPadMode(int64_t, 计算输入):int64数据类型,表示使用不同的场景,取值为0和1,0代表dropless场景,不校验expertNum和expertCapacity;1代表drop场景,需要校验expertNum和expertCapacity,对于每个专家处理的超过和不足expertCapacity的值会做相应的处理。
- activeNum(int64_t, 计算输入):int64数据类型,表示gradExpandedXOut最大输出行数,当dropPadMode是0时,只有当activeNum大于0且小于R * K时,该参数才生效;当dropPadMode是1时,该参数不生效。
- expertNum(int64_t, 计算输入):int64数据类型,表示专家数,当dropPadMode是0时,该参数不生效;当dropPadMode是1时,当biasOptional非空指针时,expertNum必须等于E,当biasOptional是空指针时,expertNum必须大于0,否则会报错。
- expertCapacity(int64_t, 计算输入):int64数据类型,表示每个专家能够处理的行数,当dropPadMode是0时,该参数不生效;当dropPadMode是1时,expertCapacity必须大于0,否则会报错。
- gradExpandedXOut(aclTensor*,计算输出):Device侧的aclTensor,MoeFinalizeRoutingV2正向输入expandedX的导数,当dropPadMode是0时,要求是一个2D的Tensor,当activeNum大于0且小于R * K时,shape为(activeNum, H),否则shape为(R * K, H);当dropPadMode是1时,要求是一个3D的Tensor,shape为(expertNum, expertCapacity, H),数据类型同gradY,支持FLOAT16、BFLOAT16、FLOAT32,数据格式要求为ND,不支持非连续输出。
- gradScalesOut(aclTensor*,计算输出):Device侧的aclTensor,MoeFinalizeRoutingV2正向输入scales的导数,当scalesOptional不是空指针时,此输出才有意义,要求是一个2D的Tensor,shape为(R, K),数据类型同gradY,支持FLOAT16、BFLOAT16、FLOAT32,数据格式要求为ND,不支持非连续输出。
- workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
161001(ACLNN_ERR_PARAM_NULLPTR): 1. 必选输入和输出的Tensor是空指针。 161002(ACLNN_ERR_PARAM_INVALID): 1. 输入和输出的数据类型和格式不在支持的范围内 561002(ACLNN_ERR_INNER_TILING_ERROR): 1. 输入和输出的shape、取值不满足参数说明中的要求
aclnnMoeFinalizeRoutingV2Grad
参数说明:
- workspace(void*,入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnMoeFinalizeRoutingV2GradGetWorkspaceSize获取。
- executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
- stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
约束与限制
无
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_moe_finalize_routing_v2_grad.h"
#include <iostream>
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t> &shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
void PrintOutResult(std::vector<int64_t> &shape, void **deviceAddr) {
auto size = GetShapeSize(shape);
std::vector<float> resultData(size, 0);
auto ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), *deviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
}
int Init(int32_t deviceId, aclrtStream *stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> gradYShape = {2, 2};
std::vector<int64_t> expandedRowIdxShape = {4};
std::vector<int64_t> expandedXShape = {4, 2};
std::vector<int64_t> scalesShape = {2, 2};
std::vector<int64_t> expertIdxShape = {2, 2};
std::vector<int64_t> biasShape = {2, 2};
std::vector<int64_t> gradExpandedXShape = {4, 2};
std::vector<int64_t> gradScalesShape = {2, 2};
void* gradYDeviceAddr = nullptr;
void* expandedRowIdxDeviceAddr = nullptr;
void* expandedXDeviceAddr = nullptr;
void* scalesDeviceAddr = nullptr;
void* expertIdxDeviceAddr = nullptr;
void* biasDeviceAddr = nullptr;
void* gradExpandedXDeviceAddr = nullptr;
void* gradScalesDeviceAddr = nullptr;
aclTensor* gradY = nullptr;
aclTensor* expandedRowIdx = nullptr;
aclTensor* expandedX = nullptr;
aclTensor* scales = nullptr;
aclTensor* expertIdx = nullptr;
aclTensor* bias = nullptr;
int64_t dropPadMode = 0;
int64_t activeNum = 0;
int64_t expertNum = 0;
int64_t expertCapacity = 0;
aclTensor* gradExpandedX = nullptr;
aclTensor* gradScales = nullptr;
std::vector<float> gradYHostData = {0.3816, 0.3939, 0.8474, 0.1652};
std::vector<int> expandedRowIdxHostData = {1, 3, 0, 2};
std::vector<float> expandedXHostData = {0.6049, 0.3315, 0.4954, 0.3284, 0.7060, 0.4359, 0.6514, 0.9476};
std::vector<float> scalesHostData = {0.4708, 0.0656, 0.9652, 0.9512};
std::vector<int> expertIdxHostData = {0, 1, 0, 1};
std::vector<float> biasHostData = {0.6452, 0.1981, 0.4159, 0.9575};
std::vector<float> gradExpandedXHostData = {0, 0, 0, 0, 0, 0, 0, 0};
std::vector<float> gradScalesHostData = {0, 0, 0, 0};
ret = CreateAclTensor(gradYHostData, gradYShape, &gradYDeviceAddr, aclDataType::ACL_FLOAT, &gradY);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(expandedRowIdxHostData, expandedRowIdxShape, &expandedRowIdxDeviceAddr, aclDataType::ACL_INT32,
&expandedRowIdx);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(expandedXHostData, expandedXShape, &expandedXDeviceAddr, aclDataType::ACL_FLOAT, &expandedX);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(scalesHostData, scalesShape, &scalesDeviceAddr, aclDataType::ACL_FLOAT, &scales);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(expertIdxHostData, expertIdxShape, &expertIdxDeviceAddr, aclDataType::ACL_INT32, &expertIdx);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_FLOAT, &bias);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(gradExpandedXHostData, gradExpandedXShape, &gradExpandedXDeviceAddr, aclDataType::ACL_FLOAT,
&gradExpandedX);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(gradScalesHostData, gradScalesShape, &gradScalesDeviceAddr, aclDataType::ACL_FLOAT, &gradScales);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor *executor;
// 调用aclnnMoeFinalizeRoutingV2Grad第一段接口
ret = aclnnMoeFinalizeRoutingV2GradGetWorkspaceSize(gradY, expandedRowIdx, expandedX, scales, expertIdx, bias,
dropPadMode, activeNum, expertNum, expertCapacity, gradExpandedX,gradScales, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMoeFinalizeRoutingV2GradGetWorkspaceSize failed. ERROR: %d\n", ret);
return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void *workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnMoeFinalizeRoutingV2Grad第二段接口
ret = aclnnMoeFinalizeRoutingV2Grad(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMoeFinalizeRoutingV2Grad failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5.获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
LOG_PRINT("gradExpandedX result is: \n");
PrintOutResult(gradExpandedXShape, &gradExpandedXDeviceAddr);
LOG_PRINT("gradScales result is: \n");
PrintOutResult(gradScalesShape, &gradScalesDeviceAddr);
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(gradY);
aclDestroyTensor(expandedRowIdx);
aclDestroyTensor(expandedX);
aclDestroyTensor(scales);
aclDestroyTensor(expertIdx);
aclDestroyTensor(bias);
aclDestroyTensor(gradExpandedX);
aclDestroyTensor(gradScales);
// 7. 释放device资源
aclrtFree(gradYDeviceAddr);
aclrtFree(expandedRowIdxDeviceAddr);
aclrtFree(expandedXDeviceAddr);
aclrtFree(scalesDeviceAddr);
aclrtFree(expertIdxDeviceAddr);
aclrtFree(biasDeviceAddr);
aclrtFree(gradExpandedXDeviceAddr);
aclrtFree(gradScalesDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}