aclnnAminmax
支持的产品型号
- Atlas 推理系列产品。
- Atlas 训练系列产品。
- Atlas A2训练系列产品/Atlas 800I A2推理产品。
接口原型
每个算子分为两段式接口,必须先调用“aclnnAminmaxGetWorkspaceSize”接口获取入参并根据流程计算所需workspace大小,再调用“aclnnAminmax”接口执行计算。
aclnnStatus aclnnAminmaxGetWorkspaceSize(const aclTensor *self, const aclIntArray *dim, bool keepDim, aclTensor *minOut, aclTensor *maxOut, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnAminmax(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
算子功能:返回输入张量在指定维度上每行的最小值和最大值。
aclnnAminmaxGetWorkspaceSize
参数说明:
- self(const aclTensor*, 计算输入): Device侧的aclTensor,数据类型支持FLOAT、BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持)、FLOAT16、DOUBLE、INT8、INT16、INT32、INT64、UINT8、BOOL。支持非连续的Tensor,数据格式支持ND。
- dim(aclIntArray*, 计算输入): host侧的aclIntArray,指定要缩减的维度,支持的数据类型为INT32、INT64。
- keepDim(bool, 计算输入): host侧的bool,reduce轴的维度是否保留。
- minOut(aclTensor*, 计算输出): Device侧的aclTensor,数据类型支持FLOAT、BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持)、FLOAT16、DOUBLE、INT8、INT16、INT32、INT64、UINT8、BOOL, 且数据类型与self一致。支持非连续的Tensor,数据格式支持ND。
- maxOut(aclTensor*, 计算输出): Device侧的aclTensor,数据类型支持FLOAT、BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持)、FLOAT16、DOUBLE、INT8、INT16、INT32、INT64、UINT8、BOOL, 且数据类型与self一致。支持非连续的Tensor,数据格式支持ND。
- workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的self、dim、minOut或maxOut是空指针。 161002 (ACLNN_ERR_PARAM_INVALID): 1. self的数据类型不在支持的范围内时。 2. minOut或maxOut与self的数据类型不一致。 3. self、minOut或maxOut的shape超过8维。 4. dim超出范围。 5. dim指定的轴为空轴。
aclnnAminmax
参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnAddGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
约束与限制
无
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_aminmax.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
// check根据自己的需要处理
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfShape = {2, 3, 2};
std::vector<int64_t> outShape = {1, 3, 2};
void* selfDeviceAddr = nullptr;
void* minOutDeviceAddr = nullptr;
void* maxOutDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclTensor* minOut = nullptr;
aclTensor* maxOut = nullptr;
std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
std::vector<float> minOutHostData = {0, 0, 0, 0, 0, 0};
std::vector<float> maxOutHostData = {0, 0, 0, 0, 0, 0};
std::vector<int64_t> dimData = {0};
bool keepDim = true;
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建dim aclIntArray
aclIntArray *dim = aclCreateIntArray(dimData.data(), dimData.size());
// 创建out aclTensor
ret = CreateAclTensor(minOutHostData, outShape, &minOutDeviceAddr, aclDataType::ACL_FLOAT, &minOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(maxOutHostData, outShape, &maxOutDeviceAddr, aclDataType::ACL_FLOAT, &maxOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnAminmax第一段接口
ret = aclnnAminmaxGetWorkspaceSize(self, dim, keepDim, minOut, maxOut, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAminmaxGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnAminmax第二段接口
ret = aclnnAminmax(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAminmax failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> minResultData(size, 0);
ret = aclrtMemcpy(minResultData.data(), minResultData.size() * sizeof(minResultData[0]), minOutDeviceAddr,
size * sizeof(minResultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, minResultData[i]);
}
std::vector<float> maxResultData(size, 0);
ret = aclrtMemcpy(maxResultData.data(), maxResultData.size() * sizeof(maxResultData[0]), maxOutDeviceAddr,
size * sizeof(maxResultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, maxResultData[i]);
}
// 6. 释放aclTensor,需要根据具体API的接口定义修改
aclDestroyTensor(self);
aclDestroyIntArray(dim);
aclDestroyTensor(minOut);
aclDestroyTensor(maxOut);
// 7. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(selfDeviceAddr);
aclrtFree(minOutDeviceAddr);
aclrtFree(maxOutDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}