aclnnCrossEntropyLoss
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品 。
接口原型
每个算子分为两段式接口,必须先调用“aclnnCrossEntropyLossGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnCrossEntropyLoss”接口执行计算。
aclnnStatus aclnnCrossEntropyLossGetWorkspaceSize(const aclTensor* input, const aclTensor* target, const aclTensor* weightOptional, const char* reduction, float labelSmoothing, float lseSquareScaleForZloss, bool returnZloss, aclTensor* loss, aclTensor* logProb, aclTensor* zloss, aclTensor* lseForZloss, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnCrossEntropyLoss(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
功能描述
算子功能:计算输入的交叉熵损失。
计算表达式:
reduction = mean时,交叉熵损失loss的计算公式为:
log_prob计算公式为:
zloss计算公式为:
其中,N为batch数,C为标签数。
aclnnCrossEntropyLossGetWorkspaceSize
参数说明:
- input(aclTensor*, 计算输入):表示输入,公式中的
input
,Device侧的aclTensor。数据类型支持FLOAT、FLOAT16、BFLOAT16。shape为(),为批处理大小,为标签数,必须大于0。数据格式支持ND。 - target(aclTensor*, 计算输入):表示标签,公式中的
y
,Device侧的aclTensor。数据类型支持INT64。shape为(),N与input第零维相等,数值在[0, C)之间。数据格式支持ND。 - weightOptional(aclTensor*, 计算输入):表示为每个类别指定的缩放权重,公式中的
weight
。为inputLengths中的元素,Device侧的aclTensor。数据类型支持FLOAT。shape为()。如果不给定,则不对target加权。数据格式支持ND。 - reduction(char*, 计算输入):表示loss的归约方式。Host侧的String,支持["mean", "sum", "none"]。
- ignoreIndex(int, 计算输入):指定忽略的标签。Host侧的整型。数值必须小于,当小于零时视为无忽略标签。
- labelSmoothing(float, 计算输入):表示计算loss时的平滑量。Host侧的浮点型。数值在[0.0, 1.0)之间。
- lseSquareScaleForZloss(float, 计算输入):表示zloss计算所需的scale。Host侧的浮点型。公式中的
lse_square_scale_for_zloss
。数值在[0, 1)之间。当前仅支持传入nulltpr。 - returnZloss(bool, 计算输入):控制是否返回zloss输出。Host侧的布尔值。需要输出zLoss时传入True,否则传入False。当前仅支持传入nulltpr。
- loss(aclTensor*,计算输出):表示输出损失。Device侧的aclTensor。数据类型与input相同。reduction为"None"时,shape为[N],与input第零维一致;否则shape为[1]。数据格式支持ND。
- logProb(aclTensor*,计算输出):输出给反向计算的输出。Device侧的aclTensor。数据类型与input相同。shape为[],与input一致。数据格式支持ND。
- zloss(aclTensor*,计算输出):表示辅助损失。Device侧的aclTensor。数据类型与input相同。shape为与loss一致。数据格式支持ND。当return_zloss为True时,输出zloss,否则输出为None。当前暂不支持。
- lseForZloss(aclTensor*,计算输出):表示zloss场景输出给反向的Tensor,lseSquareScaleForZloss为0时输出为None。Device侧的aclTensor。数据类型与input相同。shape为[N],与input的第零维一致。数据格式支持ND。当前暂不支持。
- workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
- input(aclTensor*, 计算输入):表示输入,公式中的
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的input、target、loss、logProb、zloss、lseForZloss是空指针。
aclnnCrossEntropyLoss
参数说明:
- workspace(void*, 入参): 在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参): 在Device侧申请的workspace大小,由第一段接口aclnnCrossEntropyLossGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参): op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参): 指定执行任务的AscendCL Stream流。
返回值:
- aclnnStatus: 返回状态码,具体参见aclnn返回码。
约束与限制
- target仅支持类标签索引,不支持概率输入。
- 当前暂不支持zloss相关功能。lseSquareScaleForZloss、returnZloss仅支持传入nullptr。
- input第零维N需满足N<200000。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_cross_entropy_loss.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shape_size = 1;
for (auto i : shape) {
shape_size *= i;
}
return shape_size;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化, 参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 7;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
// check根据自己的需要处理
CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> inputShape = {2, 5};
std::vector<int64_t> targetShape = {2,};
std::vector<int64_t> weightShape = {5,};
std::vector<int64_t> lossOutShape = {1,};
std::vector<int64_t> logProbOutShape = {2,5};
std::vector<int64_t> zlossOutShape = {1,};
std::vector<int64_t> lseForZlossOutShape = {2,};
void* inputDeviceAddr = nullptr;
void* targetDeviceAddr = nullptr;
void* weightDeviceAddr = nullptr;
void* lossOutDeviceAddr = nullptr;
void* logProbOutDeviceAddr = nullptr;
void* zlossDeviceAddr = nullptr;
void* lseForZlossDeviceAddr = nullptr;
aclTensor* input = nullptr;
aclTensor* target = nullptr;
aclTensor* weight = nullptr;
aclTensor* lossOut = nullptr;
aclTensor* logProbOut = nullptr;
aclTensor* zloss = nullptr;
aclTensor* lseForZloss = nullptr;
// data
std::vector<float> inputHostData = {5, 0, 3, 3, 7,
9, 3, 5, 2, 4};
std::vector<int64_t> targetHostData = {0, 0};
std::vector<float> lossOutHostData = {1.0937543};
std::vector<float> logProbOutHostData = {
-2.159461, -7.159461, -4.159461, -4.159461, -0.159461,
-0.0280476, -6.0280476, -4.0280476, -7.0280476, -5.0280476};
std::vector<float> zlossOutHostData = {0};
std::vector<float> lseForZlossOutHostData = {0, 0};
// attr
char* reduction = "mean";
int64_t ignoreIndex = -100;
float labelSmoothing = 0.0;
float lseSquareScaleForZloss = 0.0;
bool returnZloss = 0;
// 创建input aclTensor
ret = CreateAclTensor(inputHostData, inputShape, &inputDeviceAddr, aclDataType::ACL_FLOAT, &input);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建target aclTensor
ret = CreateAclTensor(targetHostData, targetShape, &targetDeviceAddr, aclDataType::ACL_INT64, &target);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建lossOut aclTensor
ret = CreateAclTensor(lossOutHostData, lossOutShape, &lossOutDeviceAddr, aclDataType::ACL_FLOAT, &lossOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建logProbOut aclTensor
ret = CreateAclTensor(logProbOutHostData, logProbOutShape, &logProbOutDeviceAddr, aclDataType::ACL_FLOAT, &logProbOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建zloss aclTensor
ret = CreateAclTensor(zlossOutHostData, zlossOutShape, &zlossDeviceAddr, aclDataType::ACL_FLOAT, &zloss);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// lseForZloss aclTensor
ret = CreateAclTensor(lseForZlossOutHostData, lseForZlossOutShape, &lseForZlossDeviceAddr, aclDataType::ACL_FLOAT, &lseForZloss);
CHECK_RET(ret == ACL_SUCCESS, return ret);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 3. 调用CANN算子库API,需要修改为具体的Api名称
// 调用aclnnCrossEntropyLoss第一段接口
ret = aclnnCrossEntropyLossGetWorkspaceSize(input, target, weight, reduction, ignoreIndex, labelSmoothing, lseSquareScaleForZloss, returnZloss, lossOut, logProbOut, zloss, lseForZloss, &workspaceSize, &executor);
CHECK_RET(
ret == ACL_SUCCESS,
LOG_PRINT("aclnnCrossEntropyLossGetWorkspaceSize failed. ERROR: %d\n",
ret);
return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void *workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret);
return ret);
}
// 调用aclnnCrossEntropyLoss第二段接口
ret = aclnnCrossEntropyLoss(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclnnCrossEntropyLoss failed. ERROR: %d\n", ret);
return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret);
return ret);
// 5.获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改]
auto size1 = GetShapeSize(lossOutShape);
auto size2 = GetShapeSize(logProbOutShape);
std::vector<float> resultData1(size1, 0);
std::vector<float> resultData2(size2, 0);
ret = aclrtMemcpy(resultData1.data(), resultData1.size() * sizeof(resultData1[0]), lossOutDeviceAddr,
size1 * sizeof(resultData1[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy loss result from device to host failed. ERROR: %d\n", ret); return ret);
LOG_PRINT("loss is: \n[");
for (int64_t i = 0; i < size1; i++) {
LOG_PRINT("%f, ", i, resultData1[i]);
}
LOG_PRINT("]\n");
ret = aclrtMemcpy(resultData2.data(), resultData2.size() * sizeof(resultData2[0]), logProbOutDeviceAddr,
size2 * sizeof(resultData2[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy logProb result from device to host failed. ERROR: %d\n", ret); return ret);
LOG_PRINT("logprob is: \n [");
for (int64_t i = 0; i < size2; i++) {
LOG_PRINT("%f,", i, resultData2[i]);
}
LOG_PRINT("]\n");
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(input);
aclDestroyTensor(target);
aclDestroyTensor(lossOut);
aclDestroyTensor(logProbOut);
// 7. 释放device资源
aclrtFree(inputDeviceAddr);
aclrtFree(targetDeviceAddr);
aclrtFree(lossOutDeviceAddr);
aclrtFree(logProbOutDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}