昇腾社区首页
中文
注册

aclnnCrossEntropyLoss

支持的产品型号

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnCrossEntropyLossGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnCrossEntropyLoss”接口执行计算。

  • aclnnStatus aclnnCrossEntropyLossGetWorkspaceSize(const aclTensor* input, const aclTensor* target, const aclTensor* weightOptional, const char* reduction, float labelSmoothing, float lseSquareScaleForZloss, bool returnZloss, aclTensor* loss, aclTensor* logProb, aclTensor* zloss, aclTensor* lseForZloss, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnCrossEntropyLoss(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)

功能描述

  • 算子功能:计算输入的交叉熵损失。

  • 计算表达式:

    reduction = mean时,交叉熵损失loss的计算公式为:

    ln=weightynlogexp(xn,yn)c=1Cexp(xn,c)1{yn != ignoreIndex}l_n = -weight_{y_n}*log\frac{exp(x_{n,y_n})}{\sum_{c=1}^Cexp(x_{n,c})}*1\{y_n\ !=\ ignoreIndex \} loss={n=1N1n=1Nweightyn1{yn != ignoreIndex}ln,if reduction = ‘mean’n=1Nln,if reduction = ‘sum’ {l0,l1,...,ln},if reduction = ‘None’ loss=\begin{cases}\sum_{n=1}^N\frac{1}{\sum_{n=1}^Nweight_{y_n}*1\{y_n\ !=\ ignoreIndex \}}l_n,&\text{if reduction = ‘mean’} \\\sum_{n=1}^Nl_n,&\text {if reduction = ‘sum’ }\\\{l_0,l_1,...,l_n\},&\text{if reduction = ‘None’ }\end{cases}

    log_prob计算公式为:

    lsen=logc=1Cexp(xn,c)lse_n = log*\sum_{c=1}^{C}exp(x_{n,c}) logProbn,c=xn,clsenlogProb_{n,c} = x_{n,c} - lse_n

    zloss计算公式为:

    zlossn=lseSquareScaleForZlosslsen2zloss_n = lseSquareScaleForZloss * (lse_n)^2

    其中,N为batch数,C为标签数。

aclnnCrossEntropyLossGetWorkspaceSize

  • 参数说明:

    • input(aclTensor*, 计算输入):表示输入,公式中的input,Device侧的aclTensor。数据类型支持FLOAT、FLOAT16、BFLOAT16。shape为(N,CN, C),NN为批处理大小,CC为标签数,必须大于0。数据格式支持ND。
    • target(aclTensor*, 计算输入):表示标签,公式中的y,Device侧的aclTensor。数据类型支持INT64。shape为(NN),N与input第零维相等,数值在[0, C)之间。数据格式支持ND。
    • weightOptional(aclTensor*, 计算输入):表示为每个类别指定的缩放权重,公式中的weight。为inputLengths中的元素,Device侧的aclTensor。数据类型支持FLOAT。shape为(CC)。如果不给定,则不对target加权。数据格式支持ND。
    • reduction(char*, 计算输入):表示loss的归约方式。Host侧的String,支持["mean", "sum", "none"]。
    • ignoreIndex(int, 计算输入):指定忽略的标签。Host侧的整型。数值必须小于CC,当小于零时视为无忽略标签。
    • labelSmoothing(float, 计算输入):表示计算loss时的平滑量。Host侧的浮点型。数值在[0.0, 1.0)之间。
    • lseSquareScaleForZloss(float, 计算输入):表示zloss计算所需的scale。Host侧的浮点型。公式中的lse_square_scale_for_zloss。数值在[0, 1)之间。当前仅支持传入nulltpr。
    • returnZloss(bool, 计算输入):控制是否返回zloss输出。Host侧的布尔值。需要输出zLoss时传入True,否则传入False。当前仅支持传入nulltpr。
    • loss(aclTensor*,计算输出):表示输出损失。Device侧的aclTensor。数据类型与input相同。reduction为"None"时,shape为[N],与input第零维一致;否则shape为[1]。数据格式支持ND。
    • logProb(aclTensor*,计算输出):输出给反向计算的输出。Device侧的aclTensor。数据类型与input相同。shape为[N,CN,C],与input一致。数据格式支持ND。
    • zloss(aclTensor*,计算输出):表示辅助损失。Device侧的aclTensor。数据类型与input相同。shape为与loss一致。数据格式支持ND。当return_zloss为True时,输出zloss,否则输出为None。当前暂不支持。
    • lseForZloss(aclTensor*,计算输出):表示zloss场景输出给反向的Tensor,lseSquareScaleForZloss为0时输出为None。Device侧的aclTensor。数据类型与input相同。shape为[N],与input的第零维一致。数据格式支持ND。当前暂不支持。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的input、target、loss、logProb、zloss、lseForZloss是空指针。

aclnnCrossEntropyLoss

  • 参数说明:

    • workspace(void*, 入参): 在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参): 在Device侧申请的workspace大小,由第一段接口aclnnCrossEntropyLossGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参): op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参): 指定执行任务的AscendCL Stream流。
  • 返回值:

约束与限制

  • target仅支持类标签索引,不支持概率输入。
  • 当前暂不支持zloss相关功能。lseSquareScaleForZloss、returnZloss仅支持传入nullptr。
  • input第零维N需满足N<200000。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_cross_entropy_loss.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
    // 1. (固定写法)device/stream初始化, 参考AscendCL对外接口列表
    // 根据自己的实际device填写deviceId
    int32_t deviceId = 7;
    aclrtStream stream;
    auto ret = Init(deviceId, &stream);
    // check根据自己的需要处理
    CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    // 2. 构造输入与输出,需要根据API的接口自定义构造
    std::vector<int64_t> inputShape = {2, 5};
    std::vector<int64_t> targetShape = {2,};
    std::vector<int64_t> weightShape = {5,};
    std::vector<int64_t> lossOutShape = {1,};
    std::vector<int64_t> logProbOutShape = {2,5};
    std::vector<int64_t> zlossOutShape = {1,};
    std::vector<int64_t> lseForZlossOutShape = {2,};

    void* inputDeviceAddr = nullptr;
    void* targetDeviceAddr = nullptr;
    void* weightDeviceAddr = nullptr;

    void* lossOutDeviceAddr = nullptr;
    void* logProbOutDeviceAddr = nullptr;
    void* zlossDeviceAddr = nullptr;
    void* lseForZlossDeviceAddr = nullptr;
    aclTensor* input = nullptr;
    aclTensor* target = nullptr;
    aclTensor* weight = nullptr;
    aclTensor* lossOut = nullptr;
    aclTensor* logProbOut = nullptr;
    aclTensor* zloss = nullptr;
    aclTensor* lseForZloss = nullptr;
    
    // data
    std::vector<float> inputHostData = {5, 0, 3, 3, 7,
                                            9, 3, 5, 2, 4};
    std::vector<int64_t> targetHostData = {0, 0};
    std::vector<float> lossOutHostData = {1.0937543};
    std::vector<float> logProbOutHostData = {
        -2.159461, -7.159461, -4.159461, -4.159461, -0.159461,
        -0.0280476, -6.0280476, -4.0280476, -7.0280476, -5.0280476};
    std::vector<float> zlossOutHostData = {0};
    std::vector<float> lseForZlossOutHostData = {0, 0};

    // attr
    char* reduction = "mean";
    int64_t ignoreIndex = -100;
    float labelSmoothing = 0.0;
    float lseSquareScaleForZloss = 0.0;
    bool returnZloss = 0;

    // 创建input aclTensor
    ret = CreateAclTensor(inputHostData, inputShape, &inputDeviceAddr, aclDataType::ACL_FLOAT, &input);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建target aclTensor
    ret = CreateAclTensor(targetHostData, targetShape, &targetDeviceAddr, aclDataType::ACL_INT64, &target);
    CHECK_RET(ret == ACL_SUCCESS, return ret);

    // 创建lossOut aclTensor
    ret = CreateAclTensor(lossOutHostData, lossOutShape, &lossOutDeviceAddr, aclDataType::ACL_FLOAT, &lossOut);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建logProbOut aclTensor
    ret = CreateAclTensor(logProbOutHostData, logProbOutShape, &logProbOutDeviceAddr, aclDataType::ACL_FLOAT, &logProbOut);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建zloss aclTensor
    ret = CreateAclTensor(zlossOutHostData, zlossOutShape, &zlossDeviceAddr, aclDataType::ACL_FLOAT, &zloss);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // lseForZloss aclTensor
    ret = CreateAclTensor(lseForZlossOutHostData, lseForZlossOutShape, &lseForZlossDeviceAddr, aclDataType::ACL_FLOAT, &lseForZloss);
    CHECK_RET(ret == ACL_SUCCESS, return ret);

    uint64_t workspaceSize = 0;
    aclOpExecutor* executor;

    // 3. 调用CANN算子库API,需要修改为具体的Api名称
    // 调用aclnnCrossEntropyLoss第一段接口
    ret = aclnnCrossEntropyLossGetWorkspaceSize(input, target, weight, reduction, ignoreIndex, labelSmoothing, lseSquareScaleForZloss, returnZloss, lossOut, logProbOut, zloss, lseForZloss, &workspaceSize, &executor);

    CHECK_RET(
        ret == ACL_SUCCESS,
        LOG_PRINT("aclnnCrossEntropyLossGetWorkspaceSize failed. ERROR: %d\n",
                    ret);
        return ret);

    // 根据第一段接口计算出的workspaceSize申请device内存
    void *workspaceAddr = nullptr;
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS,
                LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret);
                return ret);
    }

    // 调用aclnnCrossEntropyLoss第二段接口
    ret = aclnnCrossEntropyLoss(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS,
                LOG_PRINT("aclnnCrossEntropyLoss failed. ERROR: %d\n", ret);
                return ret);

    // 4. (固定写法)同步等待任务执行结束
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS,
                LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret);
                return ret);

    // 5.获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改]

    auto size1 = GetShapeSize(lossOutShape);
    auto size2 = GetShapeSize(logProbOutShape);
    std::vector<float> resultData1(size1, 0);
    std::vector<float> resultData2(size2, 0);
    ret = aclrtMemcpy(resultData1.data(), resultData1.size() * sizeof(resultData1[0]), lossOutDeviceAddr,
                        size1 * sizeof(resultData1[0]), ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy loss result from device to host failed. ERROR: %d\n", ret); return ret);
    LOG_PRINT("loss is: \n[");
    for (int64_t i = 0; i < size1; i++) {
        LOG_PRINT("%f, ", i, resultData1[i]);
    }
    LOG_PRINT("]\n");

    ret = aclrtMemcpy(resultData2.data(), resultData2.size() * sizeof(resultData2[0]), logProbOutDeviceAddr,
                        size2 * sizeof(resultData2[0]), ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy logProb result from device to host failed. ERROR: %d\n", ret); return ret);
    LOG_PRINT("logprob is: \n [");
    for (int64_t i = 0; i < size2; i++) {
        LOG_PRINT("%f,", i, resultData2[i]);
    }
    LOG_PRINT("]\n");

    // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
    aclDestroyTensor(input);
    aclDestroyTensor(target);
    aclDestroyTensor(lossOut);
    aclDestroyTensor(logProbOut);

    // 7. 释放device资源
    aclrtFree(inputDeviceAddr);
    aclrtFree(targetDeviceAddr);
    aclrtFree(lossOutDeviceAddr);
    aclrtFree(logProbOutDeviceAddr);
    if (workspaceSize > 0) {
        aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(stream);
    aclrtResetDevice(deviceId);
    aclFinalize();
    return 0;
}