昇腾社区首页
中文
注册

aclnnCrossEntropyLossGrad

支持的产品型号

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnCrossEntropyLossGradGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnCrossEntropyLossGrad”接口执行计算。

  • aclnnStatus aclnnCrossEntropyLossGradGetWorkspaceSize(const aclTensor *gradLoss, const aclTensor *logProb, const aclTensor *target, const aclTensor *weightOptional, const aclTensor *gradZlossOptional, const aclTensor *lseForZlossOptional, const char* reduction, int64_t ignoreIndex, float labelSmoothing, float lseSquareScaleForZloss, aclTensor *xGradOut, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnCrossEntropyLossGrad(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:aclnnCrossEntropyLoss的反向传播。
  • 计算公式
ignoreMasktarget(t)={1,target(t)ignoreIndex0,target(t)=ignoreIndexignoreMask_{target(t)}=\begin{cases} 1, &target(t) ≠ ignoreIndex \\ 0, &target(t) = ignoreIndex \end{cases} smoothLossGrad={grad/sum(weighttargetignoreMask)labelSmoothing/C,redutcion=meangradlabelSmoothing/C,redutcion=sumgradlabelSmoothing/C,redutcion=nonesmoothLossGrad=\begin{cases} grad / sum(weight_{target}* ignoreMask) * labelSmoothing / C, &redutcion = mean \\ grad * labelSmoothing / C, &redutcion = sum \\ grad * labelSmoothing / C, &redutcion = none \end{cases} lossOutGrad={grad(1labelSmoothing)/sum(weighttargetignoreMask)ignoreMask,redutcion=meangrad(1labelSmoothing)ignoreMask,redutcion=sumgrad(1labelSmoothing)ignoreMask,redutcion=nonelossOutGrad=\begin{cases} grad * (1-labelSmoothing) / sum(weight_{target}* ignoreMask) * ignoreMask, &redutcion = mean \\ grad * (1-labelSmoothing) * ignoreMask, &redutcion = sum \\ grad * (1-labelSmoothing) * ignoreMask, &redutcion = none \end{cases} nllLossGrad=lossOutGradweighttargetnllLossGrad = lossOutGrad * weight_{target} logSoftmaxGradLossOutSubPart=exp(logProb)nllLossGradlogSoftmaxGradLossOutSubPart = exp(logProb) * nllLossGrad predictionsGradLossOutij={nllLossGradi,j=target(i)0,jtarget(i)predictionsGradLossOut_{ij}=\begin{cases} nllLossGrad_i, & j=target(i) \\ 0, & j ≠ target(i) \end{cases} predictionsGradLossOut=logSoftmaxGradLossOutSubPartpredictionsGradLossOutpredictionsGradLossOut = logSoftmaxGradLossOutSubPart - predictionsGradLossOut smoothLossGrad=smoothLossGradignoreMasksmoothLossGrad = smoothLossGrad * ignoreMask logSoftmaxGradSmoothLoss=smoothLossGradweightlogSoftmaxGradSmoothLoss = smoothLossGrad * weight predictionsGradSmoothLoss=exp(logProb)sum(logSoftmaxGradSmoothLoss)logSoftmaxGradSmoothLosspredictionsGradSmoothLoss = exp(logProb) * sum(logSoftmaxGradSmoothLoss) - logSoftmaxGradSmoothLoss

不涉及zloss场景输出:

xGradout=predictionsGradLossOut+predictionsGradSmoothLossxGrad_{out} = predictionsGradLossOut + predictionsGradSmoothLoss

zloss场景:

gradZ={grad+gradZloss,传入gradZlossgrad,不传gradZlossgradZ=\begin{cases} grad + gradZloss, & 传入gradZloss \\ grad, & 不传gradZloss \end{cases} zlossGrad={gradZ/sum(ignoreMask),redutcion=meangradZ,redutcion=sumgradZ,redutcion=nonezlossGrad=\begin{cases} gradZ / sum(ignoreMask), & &redutcion = mean \\ gradZ, & &redutcion = sum \\ gradZ, & &redutcion = none \end{cases} lseGrad=2lseSquareScaleForZlosslseForZlossignoreMaskzlossGradlseGrad = 2 * lseSquareScaleForZloss * lseForZloss * ignoreMask * zlossGrad zlossOutputGrad=exp(logProb)lseGradzlossOutputGrad = exp(logProb) * lseGrad

zloss场景输出:

xGradout=xGradout+zlossOutputGradxGrad_{out} = xGrad_{out} + zlossOutputGrad

aclnnCrossEntropyLossGradGetWorkspaceSize

  • 参数说明:

    • gradLoss(aclTensor*,计算输入):Device侧的aclTensor,正向输出loss的梯度。参数与公式中grad对应。当reduction为none时,要求为一个维度为1D的Tensor,shape为 (N,),NN为批处理大小;当reduction为mean/sum时,要求为一个维度为0D的Tensor。数据类型支持FLOAT16、FLOAT、BFLOAT16,数据格式要求为ND。
    • logProb(aclTensor*,计算输入):Device侧的aclTensor,正向输入的logSoftmax计算结果,要求为一个维度为2D的Tensor,shape为 (N, C),CC为标签数,必须大于0。数据类型支持FLOAT16、FLOAT、BFLOAT16,数据格式要求为ND。
    • target(aclTensor*,计算输入):Device侧的aclTensor,类索引,要求为一个维度为1D的Tensor,shape为 (N,),取值范围为[0, C)。数据类型支持INT64,数据格式要求为ND。
    • weightOptional(aclTensor*,计算输入):Device侧的aclTensor,可选输入,要求shape为一个1D的Tensor,shape为(C,)。数据类型支持FLOAT32,数据格式要求为ND。
    • gradZlossOptional(aclTensor*,计算输入):Device侧的aclTensor,可选输入,当前仅支持传入nullptr。参数与公式中gradZloss对应。zloss相关输入,如果正向有zloss的额外输出,反向有个grad_zloss的输入。当reduction为none时,要求为一个维度为1D的Tensor,shape为 (N,);当reduction为mean/sum时,要求为一个维度为0D的Tensor。数据类型支持FLOAT16、FLOAT、BFLOAT16,数据格式要求为ND。
    • lseForZlossOptional(aclTensor*,计算输入):Device侧的aclTensor,可选输入。zloss相关输入,如果lse_square_scale_for_zloss非0,正向额外输出的lse_for_zloss中间结果给反向用于计算lse。要求为一个维度为1D的Tensor,shape为 (N,)。当前只支持传入nullptr。数据类型支持FLOAT16、FLOAT、BFLOAT16,数据格式要求为ND。
    • reduction(char* , 计算输入):指定要应用于输出的缩减。Host侧的字符串。'none':不应用缩减,'mean':取输出的加权平均值,'sum':求和输出。
    • ignoreIndex(int64_t, 计算输入):指定忽略不影响输入梯度的目标值。Host侧的整型。数值必须小于C,当小于零时视为无忽略标签。
    • labelSmoothing(float, 计算输入):表示计算损失时的平滑量。Host侧的浮点型。取值范围在[0.0, 1.0]的浮点数,其中0.0表示不平滑。当前仅支持输入0.0。
    • lseSquareScaleForZloss(float, 计算输入):zloss相关属性,0.0走pytorch原生分支,非0.0走zloss新分支。当前仅支持输入0.0。
    • xGradOut(aclTensor*,计算输出):梯度计算结果,要求是一个2D的Tensor,shape为(N, C)。数据类型同gradLoss,支持BFLOAT16、FLOAT16、FLOAT32,数据格式要求为ND。
    • workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    返回161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的gradLoss、logProb、target、xGradOut为空指针。
    返回161002(ACLNN_ERR_PARAM_INVALID):1. gradLoss、logProb、target、weightOptional、gradZlossOptional、lseForZlossOptional的数据类型不在支持的范围内。

aclnnCrossEntropyLossGrad

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnCrossEntropyLossGradGetWorkspaceSize获取。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

约束与限制

  • target仅支持类标签索引,不支持概率输入。
  • gradLoss、logProb、gradZlossOptional、lseForZlossOptional、xGradOut数据类型需保持一致。
  • 当前暂不支持zloss功能。gradZlossOptional、lseForZlossOptional不支持传入,且lseSquareScaleForZloss仅支持输入0.0。
  • logProb第零维N需满足N<200000。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_cross_entropy_loss_grad.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请Device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将Host侧数据拷贝到Device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> gradLossShape = {};
  std::vector<int64_t> logProbShape = {2, 3};
  std::vector<int64_t> targetShape = {2,};
  std::vector<int64_t> weightShape = {3,};
  std::vector<int64_t> xGradShape = {2, 3};
  void* gradLossDeviceAddr = nullptr;
  void* logProbDeviceAddr = nullptr;
  void* targetDeviceAddr = nullptr;
  void* weightDeviceAddr = nullptr;
  void* xGradOutDeviceAddr = nullptr;
  aclTensor* gradLoss = nullptr;
  aclTensor* logProb = nullptr;
  aclTensor* target = nullptr;
  aclTensor* weight = nullptr;
  aclTensor* gradZloss = nullptr;
  aclTensor* lseForZloss = nullptr;
  aclTensor* xGradOut = nullptr;
  std::vector<float> gradLossHostData = {0.1};
  std::vector<float> logProbHostData = {-0.2, -0.2, -0.2, -0.2, -0.2, -0.2};
  std::vector<float> targetHostData = {0, 0};
  std::vector<float> weightHostData = {1.0, 1.0, 1.0};
  std::vector<float> xGradOutHostData = {-0.0091, 0.0409, 0.0409, -0.0091, 0.0409, 0.0409};
  int64_t ignoreIndex = -100;
  float labelSmoothing = 0.0;
  float lseSquareScaleForZloss = 0.0;

  // 创建gradLoss aclTensor
  ret = CreateAclTensor(gradLossHostData, gradLossShape, &gradLossDeviceAddr, aclDataType::ACL_BF16, &gradLoss);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建logProb aclTensor
  ret = CreateAclTensor(logProbHostData, logProbShape, &logProbDeviceAddr, aclDataType::ACL_BF16, &logProb);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建target aclTensor
  ret = CreateAclTensor(targetHostData, targetShape, &targetDeviceAddr, aclDataType::ACL_INT64, &target);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建weight aclTensor
  ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建xGradOut aclTensor
  ret = CreateAclTensor(xGradOutHostData, xGradShape, &xGradOutDeviceAddr, aclDataType::ACL_BF16, &xGradOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;

  // 3. 调用CANN算子库API,需要修改为具体的API名称
  // 调用aclnnCrossEntropyLossGrad第一段接口
  ret = aclnnCrossEntropyLossGradGetWorkspaceSize(gradLoss, logProb, target, weight, gradZloss, lseForZloss, "mean", ignoreIndex, labelSmoothing, lseSquareScaleForZloss, xGradOut, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCrossEntropyLossGradGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnCrossEntropyLossGrad第二段接口
  ret = aclnnCrossEntropyLossGrad(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCrossEntropyLossGrad failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将Device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(xGradShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), xGradOutDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(gradLoss);
  aclDestroyTensor(logProb);
  aclDestroyTensor(target);
  aclDestroyTensor(weight);
  aclDestroyTensor(xGradOut);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(gradLossDeviceAddr);
  aclrtFree(logProbDeviceAddr);
  aclrtFree(targetDeviceAddr);
  aclrtFree(weightDeviceAddr);
  aclrtFree(xGradOutDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}