昇腾社区首页
中文
注册

aclnnQuantGroupedMatmulDequant

支持的产品型号

  • 昇腾310P AI处理器。

接口原型

每个算子分为两段式接口,必须先调用“aclnnQuantGroupedMatmulDequantGetWorkspaceSize”接口获取入参并根据流程计算所需workspace大小,再调用“aclnnQuantGroupedMatmulDequant”接口执行计算。

  • aclnnStatus aclnnQuantGroupedMatmulDequantGetWorkspaceSize(const aclTensor *x, const aclTensor *weight, const aclTensor *weightScale, const aclTensor *groupList, const aclTensor *biasOptional, const aclTensor *xScaleOptional, const aclTensor *xOffsetOptional, const aclTensor *smoothScaleOptional, char *xQuantMode, bool transposeWeight, const aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnQuantGroupedMatmulDequant(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:对输入 x 进行量化,分组矩阵乘以及反量化。
  • 计算公式:
    1.若输入smoothScaleOptional,则x=xscalesmoothx = x\cdot scale_{smooth} 2.若不输入xScaleOptional,则为动态量化,需要计算x量化系数scalex=row_max(abs(x))/maxquantDataTypescale_{x}=row\_max(abs(x))/max_{quantDataType} 3.量化xquantized=round(x/scalex)x_{quantized}=round(x/scale_{x}) 4.分组矩阵乘+反量化xquantized=xquantized[group[i1]:group[i]]outquantized=outquantized[group[i1]:group[i]]scalex={scalex[group[i1]:group[i]]pertokenscalexpertensoroutquantized=(xquantized@weightquantized[i]+bias)scaleweight[i]scalex\begin{aligned} x^{*}_{quantized} &= x_{quantized}[group[i-1]:group[i]]\\ out^{*}_{quantized} &= out_{quantized}[group[i-1]:group[i]]\\ scale^{*}_{x} &= \begin{cases} scale_{x}[group[i-1]:group[i]] & pertoken \\ scale_{x} & pertensor \\ \end{cases} \\ out^{*}_{quantized} &= (x^{*}_{quantized}@weight_{quantized}[i] + bias) * scale_{weight}[i] * scale^{*}_{x} \end{aligned}

aclnnQuantGroupedMatmulDequantGetWorkspaceSize

  • 参数说明:

    • x(aclTensor*,计算输入):必选参数,Device侧的aclTensor,公式中的输入xx,数据类型支持FLOAT16,数据格式支持ND。支持非连续的Tensor,shape支持2维,各个维度表示:(m,k)。
    • weight(aclTensor*,计算输入):必选参数,Device侧的aclTensor,公式中的weightquantizedweight_{quantized},数据类型支持INT8,数据格式当前只支持昇腾亲和数据排布格式。
      • ND格式下,shape支持3维。
        • 在transposeWeight为true情况下各个维度表示:(g,n,k)。
        • 在transposeWeight为false情况下各个维度表示:(g,k,n)。
      • 昇腾亲和数据排布格式下,shape支持5维。
        • 在transposeWeight为true情况下各个维度表示:(g,k1,n1,n0,k0),其中k0 = 32,n0 = 16,k1和x的k需要满足以下关系:ceilDiv(k,32)= k1。
        • 在transposeWeight为false情况下各个维度表示:(g,n1,k1,k0,n0),其中k0 = 16,n0 = 32,k1和x的k需要满足以下关系:ceilDiv(k,16)= k1。
        • 可使用aclnnCalculateMatmulWeightSizeV2接口以及aclnnTransMatmulWeight接口完成输入Format从ND到昇腾亲和数据排布格式的转换。
    • weightScale(aclTensor*,计算输入):必选参数,Device侧的aclTensor,weight的量化系数,公式中的scaleweightscale_{weight},数据类型支持FLOAT32,数据格式支持ND,支持非连续的Tensor,shape是2维(g,n),其中g,n与weight的g,n一致。
    • groupList(aclTensor*,计算输入):必选参数,Device侧的aclTensor,代表x和out分组轴方向的matmul大小分布的cumsum结果(累积和),公式中的groupgroup,数据类型支持INT64,数据格式支持ND,支持非连续的Tensor,shape是1维(g,),其中g与weight的g一致。groupList必须为非负递增数列,且最大值不超过m。
    • biasOptional(aclTensor*,计算输入):可选参数,Device侧的aclTensor,公式中的biasbias,当前仅支持传入空指针。
    • xScaleOptional(aclTensor*,计算输入):可选参数,Device侧的aclTensor,x的量化系数,公式中的scalexscale_{x},数据类型支持FLOAT32,数据格式支持ND,支持非连续的Tensor,shape是1维(t,),t = 1或m,其中m与x的m一致。若为空则为动态量化。
    • xOffsetOptional(aclTensor*,计算输入):可选参数,Device侧的aclTensor,当前仅支持传入空指针。
    • smoothScaleOptional(aclTensor*,计算输入):可选参数,Device侧的aclTensor,x的平滑系数,公式中的scalesmoothscale_{smooth},数据类型支持FLOAT16,数据格式支持ND,支持非连续的Tensor,shape是1维(k,),其中k与x的k一致。
    • xQuantMode(string,计算输入):host侧的string,指定输入x的量化模式,支持取值pertoken/pertensor,动态量化时只支持pertoken。
    • transposeWeight(bool,计算输入):Host侧的bool,表示输入weight是否转置,类型支持bool。当前只支持true。
    • out(aclTensor*,计算输出):必选参数,Device侧的aclTensor,计算结果,公式中的outout,数据类型支持FLOAT16,数据格式支持ND,只支持连续Tensor, shape支持2维,各个维度表示:(m,n)。其中m与x的m一致,n与weight的n一致。
    • workspaceSize(uint64_t *,出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor *,出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

第一段接口完成入参校验,出现以下场景时报错:
返回161001 (ACLNN_ERR_PARAM_NULLPTR): 如果传入参数是必选输入,输出或者必选属性,且是空指针。
返回161002(ACLNN_ERR_PARAM_INVALID):如果传入参数类型为aclTensor且其数据类型不在支持的范围之内。
返回561002(ACLNN_ERR_INNER_TILING_ERROR):如果传入参数类型为aclTensor且其shape与上述参数说明不符。

aclnnQuantGroupedMatmulDequant

  • 参数说明:

    • workspace(void *,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnQuantGroupedMatmulDequantGetWorkspaceSize获取。
    • executor(aclOpExecutor *,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream ,入参):指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

约束与限制

n,k都需要是16的整数倍。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_quant_grouped_matmul_dequant.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

void PrintOutResult(std::vector<int64_t> &shape, void** deviceAddr) {
  auto size = GetShapeSize(shape);
  std::vector<float> resultData(size, 0);
  auto ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]),
                         *deviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("mean result[%ld] is: %f\n", i, resultData[i]);
  }
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据复制到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  int G = 4;
  int M = 64;
  int K = 256;
  int N = 512;

  char quant_mode[16] = "pertoken";
  bool transpose_weight = true;

  std::vector<int64_t> xShape = {M,K};
  std::vector<int64_t> weightShape = {G,N,K};
  std::vector<int64_t> weightScaleShape = {G,N};
  std::vector<int64_t> xScaleShape = {M};
  std::vector<int64_t> smoothScaleShape = {K};
  std::vector<int64_t> outShape = {M,N};
  std::vector<int64_t> groupListShape = {G};

  void* xDeviceAddr = nullptr;
  void* weightDeviceAddr = nullptr;
  void* weightScaleDeviceAddr = nullptr;
  void* groupListDeviceAddr = nullptr;
  void* xScaleDeviceAddr = nullptr;
  void* smoothScaleDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;

  aclTensor* x = nullptr;
  aclTensor* weight = nullptr;
  aclTensor* weightScale = nullptr;
  aclTensor* groupList = nullptr;
  aclTensor* bias = nullptr;
  aclTensor* xScale = nullptr;
  aclTensor* xOffset = nullptr;
  aclTensor* smoothScale = nullptr;
  aclTensor* out = nullptr;

  std::vector<uint16_t> xHostData(GetShapeSize(xShape));
  std::vector<uint8_t> weightHostData(GetShapeSize(weightShape));
  std::vector<float> weightScaleHostData(GetShapeSize(weightScaleShape));
  std::vector<int64_t> groupListHostData(GetShapeSize(groupListShape));
  groupListHostData[0] = 7;
  groupListHostData[0] = 32;
  groupListHostData[0] = 40;
  groupListHostData[0] = 64;
  std::vector<float> xScaleHostData(GetShapeSize(xScaleShape));
  std::vector<uint16_t> smoothScaleHostData(GetShapeSize(smoothScaleShape));
  std::vector<uint16_t> outHostData(GetShapeSize(outShape));

  ret = CreateAclTensor(xHostData, xShape, &xDeviceAddr, aclDataType::ACL_FLOAT16, &x);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_INT8, &weight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(weightScaleHostData, weightScaleShape, &weightScaleDeviceAddr, aclDataType::ACL_FLOAT, &weightScale);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(groupListHostData, groupListShape, &groupListDeviceAddr, aclDataType::ACL_INT64, &groupList);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(xScaleHostData, xScaleShape, &xScaleDeviceAddr, aclDataType::ACL_FLOAT, &xScale);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(smoothScaleHostData, smoothScaleShape, &smoothScaleDeviceAddr, aclDataType::ACL_FLOAT16, &smoothScale);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的Api名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;

  // 调用aclnnQuantGroupedMatmulDequant第一段接口
  ret = aclnnQuantGroupedMatmulDequantGetWorkspaceSize(x, weight, weightScale, groupList,
                                                bias, xScale, xOffset, smoothScale,
                                                quant_mode, transpose_weight,
                                                out, 
                                                &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantGroupedMatmulDequantGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);

  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }

  // 调用aclnnQuantGroupedMatmulDequant第二段接口
  ret = aclnnQuantGroupedMatmulDequant(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantGroupedMatmulDequant failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果复制至host侧,需要根据具体API的接口定义修改
  PrintOutResult(outShape, &outDeviceAddr);

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(x);
  aclDestroyTensor(weight);
  aclDestroyTensor(weightScale);
  aclDestroyTensor(groupList);
  aclDestroyTensor(xScale);
  aclDestroyTensor(smoothScale);
  aclDestroyTensor(out);

  // 7. 释放device资源
  aclrtFree(xDeviceAddr);
  aclrtFree(weightDeviceAddr);
  aclrtFree(weightScaleDeviceAddr);
  aclrtFree(groupListDeviceAddr);
  aclrtFree(xScaleDeviceAddr);
  aclrtFree(smoothScaleDeviceAddr);
  aclrtFree(outDeviceAddr);

  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();

  return 0;
}