aclnnRopeWithSinCosCache
支持的产品型号
接口原型
每个算子分为两段式接口,必须先调用“aclnnRopeWithSinCosCacheGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnRopeWithSinCosCache”接口执行计算。
aclnnStatus aclnnRopeWithSinCosCacheGetWorkspaceSize(const aclTensor *positions, const aclTensor *queryIn, const aclTensor *keyIn, const aclTensor *cosSinCache, const aclIntArray *mropeSection, int64_t headSize, bool isNeoxStyle, aclTensor *queryOut, aclTensor *keyOut, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnRopeWithSinCosCache(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
- 算子功能:推理网络为了提升性能,将sin和cos输入通过cache传入,执行旋转位置编码计算。
- 计算公式:
1、mrope模式,positions的shape输入是[3, numTokens]:
(1)rotate_half(GPT-NeoX style)计算模式:
(2)rotate_interleaved(GPT-J style)计算模式:
2、rope模式,positions的shape输入是[numTokens]:
(1)rotate_half(GPT-NeoX style)计算模式:
(2)rotate_interleaved(GPT-J style)计算模式:
aclnnRopeWithSinCosCacheGetWorkspaceSize
参数说明:
- positions(aclTensor*,计算输入):Device侧的aclTensor,输入索引,公式中的
positions
,用于选取位置编码张量。要求是一个维度为1D或2D的Tensor,shape为 (numTokens)或(3, numTokens),1D维度输入是rope模式,2D维度输入是mrope模式。numTokens表示一个序列中的token数量。支持非连续的Tensor,支持空Tensor。mrope/rope模式下数据类型支持INT32、INT64,数据格式支持ND。 - queryIn(aclTensor*,计算输入):Device侧的aclTensor,表示要执行旋转位置编码的第一个张量,公式中的
query
,要求是一个维度为2D的Tensor,shape为 (numTokens, numQHeads*headSize)。numQHeads表示query
的注意力头数量。headSize表示每个注意力头维度大小。支持非连续的Tensor,支持空Tensor。mrope/rope模式下数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式支持ND。 - keyIn(aclTensor*,计算输入):Device侧的aclTensor,表示要执行旋转位置编码的第二个张量,公式中的
key
,要求是一个维度为2D的Tensor,shape为 (numTokens, numKHeads*headSize)。numKHeads表示key
的注意力头数量。headSize表示每个注意力头维度大小。支持非连续的Tensor,支持空Tensor。mrope/rope模式下数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式支持ND。 - cosSinCache(aclTensor*,计算输入):Device侧的aclTensor,表示参与计算的位置编码张量,要求shape为一个2D的(maxSeqLen, rotaryDim)。maxSeqLen表示模型处理的序列的最大长度。rotaryDim表示旋转位置嵌入的维度大小。支持非连续的Tensor,支持空Tensor。mrope/rope模式下数据类型支持BFLOAT16、FLOAT16、FLOAT32,数据格式支持ND。
- mropeSection(aclIntArray*,计算输入):mrope模式下用于整合输入的位置编码张量信息,公式中的
mropeSection
,输入mropeSection属性表示使能mrope模式。不使能mrope模式(即rope模式)输入为nullptr。 - headSize(int64_t, 计算输入):表示每个注意力头维度大小。数据类型int64。
- isNeoxStyle(bool, 计算输入):true表示rotate_half(GPT-NeoX style)计算模式,false表示rotate_interleaved(GPT-J style)计算模式。
- queryOut(aclTensor*,计算输出):输出query执行旋转位置编码后的结果,要求是一个2D的Tensor,shape为 (num_tokens, num_q_heads*head_size)。数据类型同query,mrope/rope模式下支持FLOAT、FLOAT16、BFLOAT16,数据格式要求为ND。输出连续的Tensor。
- keyOut(aclTensor*,计算输出):输出key执行旋转位置编码后的结果,要求是一个2D的Tensor,shape为shape为 (num_tokens, num_kv_heads*head_size)。数据类型同key,mrope/rope模式下支持FLOAT、FLOAT16、BFLOAT16,数据格式要求为ND。输出连续的Tensor。
- workspaceSize(uint64_t*,出参):返回用户需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
- positions(aclTensor*,计算输入):Device侧的aclTensor,输入索引,公式中的
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 返回161001(ACLNN_ERR_PARAM_NULLPTR): 传入的positions、queryIn、keyIn、cosSinCache、queryOut、keyOut是空指针。 返回161002(ACLNN_ERR_PARAM_INVALID): 1. positions、queryIn、keyIn、cosSinCache的数据类型不在支持的范围之内。 2. positions、queryIn、keyIn、cosSinCache的shape不满足要求。 3. 推导出的数据类型无法转换为指定输出queryOut、keyOut的类型。 4. mrope模式下,mropeSection输入mropeSection[0]+mropeSection[1]+mropeSection[2]!=rotary_dim/2。
aclnnRopeWithSinCosCache
- 参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnRopeWithSinCosCacheGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的 AscendCL Stream流。
返回值
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
- queryIn、keyIn、cosSinCache只支持2维shape输入。
- 当输入是BFLOAT16或FLOAT16时,rotary_dim要求是32的倍数,当输入是FLOAT32时,rotary_dim要求是16的倍数。
- 当输入tensor positions中值域超过cosSinCache的0维maxSeqLen,会有越界报错。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/level2/aclnn_rope_with_sin_cos_cache.h"
#include <iostream>
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t> &shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
void PrintOutResult(std::vector<int64_t> &shape, void **deviceAddr) {
auto size = GetShapeSize(shape);
std::vector<float> resultData(size, 0);
auto ret = aclrtMemcpy(
resultData.data(), resultData.size() * sizeof(resultData[0]), *deviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(
ret == ACL_SUCCESS,
LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret);
return );
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("mean result[%ld] is: %f\n", i, resultData[i]);
}
}
int Init(int32_t deviceId, aclrtStream *stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret);
return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret);
return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret);
return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T> &hostData,
const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret);
return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size,
ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret);
return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType,
strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret);
return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> positionsShape = {2};
std::vector<int64_t> queryInShape = {2, 64};
std::vector<int64_t> keyInShape = {2, 64};
std::vector<int64_t> cosSinCacheShape = {2, 32};
std::vector<int64_t> queryOutShape = {2, 64};
std::vector<int64_t> keyOutShape = {2, 64};
void* positionsDeviceAddr = nullptr;
void* queryInDeviceAddr = nullptr;
void* keyInDeviceAddr = nullptr;
void* cosSinCacheDeviceAddr = nullptr;
void* queryOutDeviceAddr = nullptr;
void* keyOutDeviceAddr = nullptr;
aclTensor* positions = nullptr;
aclTensor* queryIn = nullptr;
aclTensor* keyIn = nullptr;
aclTensor* cosSinCache = nullptr;
int64_t headSize = 32;
bool isNeoxStyle = true;
aclTensor *queryOut = nullptr;
aclTensor *keyOut = nullptr;
std::vector<int64_t> positionsHostData = {0, 1};
std::vector<float> queryInHostData = {74, 54, 84, 125, 23, 78, 37, 72, 27, 98, 34, 107, 29, 23, 54, 60, 70, 49,
119, 54, 29, 54, 41, 99, 27, 62, 5, 46, 108, 39, 24, 123, 33, 82, 6, 40, 88,
24, 6, 116, 38, 119, 110, 5, 30, 79, 87, 18, 29, 100, 90, 24, 21, 93, 63, 68,
34, 112, 119, 48, 74, 43, 85, 64, 14, 49, 128, 59, 18, 37, 123, 76, 14, 63, 10,
39, 107, 124, 79, 16, 17, 76, 80, 47, 90, 41, 58, 82, 75, 80, 69, 37, 74, 36, 54,
26, 32, 54, 13, 100, 105, 15, 13, 69, 122, 26, 94, 59, 29, 14, 60, 8, 24, 17, 45,
33, 107, 122, 63, 111, 75, 128, 68, 31, 105, 6, 82, 99};
std::vector<float> keyInHostData = {112, 32, 66, 114, 69, 31, 117, 122, 77, 57, 78, 119, 115, 25, 54, 27, 122, 65, 15, 85,
33, 16, 36, 6, 95, 15, 43, 6, 66, 91, 14, 101, 78, 51, 110, 74, 56, 30, 127, 61, 53, 29,
32, 65, 114, 77, 26, 116, 89, 38, 75, 14, 96, 91, 87, 34, 25, 42, 57, 26, 51, 43, 23, 42,
40, 17, 98, 117, 53, 75, 68, 75, 38, 41, 115, 76, 67, 22, 76, 10, 24, 46, 85, 54, 61, 114,
10, 59, 6, 123, 58, 10, 115, 9, 13, 58, 66, 120, 23, 30, 83, 13, 11, 76, 18, 82, 57, 4,
117, 105, 8, 73, 127, 5, 91, 56, 12, 125, 20, 3, 104, 40, 46, 18, 89, 63, 99, 104};
std::vector<float> cosSinCacheHostData = {112, 32, 66, 114, 69, 31, 117, 122, 77, 57, 78, 119, 115, 25, 54, 27, 122, 65, 15, 85,
33, 16, 36, 6, 95, 15, 43, 6, 66, 91, 14, 101, 78, 51, 110, 74, 56, 30, 127, 61, 53, 29,
32, 65, 114, 77, 26, 116, 89, 38, 75, 14, 96, 91, 87, 34, 25, 42, 57, 26, 51, 43, 23, 42};
std::vector<float> queryOutHostData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::vector<float> keyOutHostData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
ret = CreateAclTensor(positionsHostData, positionsShape,
&positionsDeviceAddr, aclDataType::ACL_INT64,
&positions);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(queryInHostData, queryInShape, &queryInDeviceAddr,
aclDataType::ACL_BF16, &queryIn);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(keyInHostData, keyInShape, &keyInDeviceAddr,
aclDataType::ACL_BF16, &keyIn);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(cosSinCacheHostData, cosSinCacheShape, &cosSinCacheDeviceAddr,
aclDataType::ACL_BF16, &cosSinCache);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(queryOutHostData, queryOutShape, &queryOutDeviceAddr, aclDataType::ACL_BF16,
&queryOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(keyOutHostData, keyOutShape, &keyOutDeviceAddr, aclDataType::ACL_BF16,
&keyOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor *executor;
// 调用aclnnRopeWithSinCosCache第一段接口
ret = aclnnRopeWithSinCosCacheGetWorkspaceSize(positions, queryIn, keyIn, cosSinCache, nullptr, headSize, isNeoxStyle,
queryOut, keyOut, &workspaceSize, &executor);
CHECK_RET(
ret == ACL_SUCCESS,
LOG_PRINT("aclnnRopeWithSinCosCacheGetWorkspaceSize failed. ERROR: %d\n", ret);
return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void *workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret);
return ret);
}
// 调用aclnnRopeWithSinCosCache第二段接口
ret = aclnnRopeWithSinCosCache(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclnnRopeWithSinCosCache failed. ERROR: %d\n", ret);
return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret);
return ret);
// 5.获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
PrintOutResult(queryOutShape, &queryOutDeviceAddr);
PrintOutResult(keyOutShape, &keyOutDeviceAddr);
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(positions);
aclDestroyTensor(queryIn);
aclDestroyTensor(keyIn);
aclDestroyTensor(cosSinCache);
aclDestroyTensor(queryOut);
aclDestroyTensor(keyOut);
// 7. 释放device资源
aclrtFree(positionsDeviceAddr);
aclrtFree(queryInDeviceAddr);
aclrtFree(keyInDeviceAddr);
aclrtFree(cosSinCacheDeviceAddr);
aclrtFree(queryOutDeviceAddr);
aclrtFree(keyOutDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}