下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

beta)torch_npu.npu_rms_norm

接口原型

torch_npu.npu_rms_norm(Tensor self, Tensor gamma, float epsilon=1e-06) -> (Tensor, Tensor) 

功能描述

RmsNorm算子是大模型常用的归一化操作,相比LayerNorm算子,其去掉了减去均值的部分 。其计算公式为

参数说明

  • self:Tensor类型,支持float16、bfloat16、float32,输入shape支持2-8维。
  • gamma:Tensor类型,数据类型需要和self保持一致,输入shape支持2-8维,通常为self的最后一维。
  • epsilon:float数据类型,用于防止除0错误。

输出说明

共两个输出,格式为: (Tensor, Tensor)

第1个输出为Tensor,计算公式的最终输出y;

第2个输出为Tensor,rms_norm的reverse rms中间结果,用于反向计算。

约束说明

输入数据类型仅支持float16、bfloat16和float32。

调用示例

import torch
import torch_npu
x = torch.randn(24, 1, 128).bfloat16().npu()
w = torch.randn(128).bfloat16().npu()
​
out1 = torch.npu_rms_norm(x, w, epsilon=1e-5)[0]
print(out1)
tensor([[[-0.1123,  0.3398,  0.0986,  ..., -2.1250, -0.8477, -0.3418]],
​
        [[-0.0591,  0.3184, -0.5000,  ...,  1.0312, -1.1719, -0.1621]],
​
        [[-0.1445,  0.3828, -0.3438,  ..., -0.9102, -0.5703,  0.0073]],
​
        ...,
​
        [[-0.1631, -0.3477,  0.4297,  ...,  0.9219,  0.1621,  0.3125]],
​
        [[-0.1387,  0.0815,  0.0967,  ...,  1.7109,  0.1455, -0.1406]],
​
        [[ 0.0698,  1.3438, -0.0127,  ..., -2.2656, -0.4473,  0.3281]]],
       device='npu:0', dtype=torch.bfloat16)
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词