TorchAir python层日志
功能简介
TorchAir python层日志开启主要通过python中logger.setLevel( )函数实现,方便进行python层功能调试和问题定位。
支持的日志级别如下:
- logging.DEBUG:日志级别DEBUG。
- logging.INFO:日志级别INFO。
- logging.WARNING:日志级别WARNING。
- logging.ERROR:日志级别ERROR。
logger.setLevel的缺省值为“logging.ERROR”,更详细的介绍请参见python官网logging模块。
使用方法
1 2 3 4 |
import logging import torch_npu from torchair import logger logger.setLevel(logging.DEBUG) |
python侧debug日志样例如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
[DEBUG] TORCHAIR 2024-04-03 09:37:40 ------------------- [DEBUG] TORCHAIR 2024-04-03 09:37:40 target: arg1_1 [DEBUG] TORCHAIR 2024-04-03 09:37:40 output Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, 1] npu:Tensor(arg1_1:0, dtype=DT_FLOAT, size=[s0, 1]))) [DEBUG] TORCHAIR 2024-04-03 09:37:40 ------------------- [DEBUG] TORCHAIR 2024-04-03 09:37:40 target: arg2_1 [DEBUG] TORCHAIR 2024-04-03 09:37:40 output Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(arg2_1:0, dtype=DT_FLOAT, size=[s0, s0]))) [DEBUG] TORCHAIR 2024-04-03 09:37:40 ------------------- [DEBUG] TORCHAIR 2024-04-03 09:37:40 target: arg3_1 [DEBUG] TORCHAIR 2024-04-03 09:37:40 output Pack(meta:FakeTensor(dtype=torch.int32, size=[s0, s0] npu:Tensor(arg3_1:0, dtype=DT_INT32, size=[s0, s0]))) [DEBUG] TORCHAIR 2024-04-03 09:37:40 ------------------- [DEBUG] TORCHAIR 2024-04-03 09:37:40 target: aten.mul.Tensor [DEBUG] TORCHAIR 2024-04-03 09:37:40 input 0: Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(arg2_1:0, dtype=DT_FLOAT, size=[s0, s0]))) [DEBUG] TORCHAIR 2024-04-03 09:37:40 input 1: Pack(meta:FakeTensor(dtype=torch.int32, size=[s0, s0] npu:Tensor(arg3_1:0, dtype=DT_INT32, size=[s0, s0]))) [DEBUG] TORCHAIR 2024-04-03 09:37:40 output Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(Cast_1:0, dtype=DT_FLOAT, size=[s0, s0]))) [DEBUG] TORCHAIR 2024-04-03 09:37:40 ------------------- [DEBUG] TORCHAIR 2024-04-03 09:37:40 target: aten.add.Tensor [DEBUG] TORCHAIR 2024-04-03 09:37:40 input 0: Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, 1] npu:Tensor(arg1_1:0, dtype=DT_FLOAT, size=[s0, 1]))) [DEBUG] TORCHAIR 2024-04-03 09:37:40 input 1: Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(Cast_1:0, dtype=DT_FLOAT, size=[s0, s0]))) [DEBUG] TORCHAIR 2024-04-03 09:37:40 output Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(Add:0, dtype=DT_FLOAT, size=[s0, s0]))) [DEBUG] TORCHAIR 2024-04-03 09:37:40 ------------------- [DEBUG] TORCHAIR 2024-04-03 09:37:40 target: output [DEBUG] TORCHAIR 2024-04-03 09:37:40 input 0: Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(Add:0, dtype=DT_FLOAT, size=[s0, s0]))) [DEBUG] TORCHAIR 2024-04-03 09:37:40 output Pack(meta:FakeTensor(dtype=torch.float32, size=[s0, s0] npu:Tensor(Add:0, dtype=DT_FLOAT, size=[s0, s0]))) [DEBUG] TORCHAIR 2024-04-03 09:37:41 runtime inputs [DEBUG] TORCHAIR 2024-04-03 09:37:41 input 0: <class 'int'>(4) |
父主题: 日志功能