下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

模型列表

注意:分析迁移工具的模型列表仅供参考,备注中提及行数仅为参考,请以实际所在行数为准。

表1 PyTorch模型列表

序号

模型

原始训练工程代码链接参考

备注

1

3D-Transformer-tr_spe

https://github.com/smiles724/Molformer/tree/f5cad25e037b0a63c7370c068a9c477f4004c5ea

-

2

3D-Transformer-tr_cpe

3

3D-Transformer-tr_full

4

AFM

https://github.com/shenweichen/DeepCTR-Torch/tree/b4d8181e86c2165722fa9331bc16185832596232

由于除DIN外,其它模型没有对应训练脚本,迁移前需要拷贝./examples/run_din.py文件,将其命名为run_<模型名称>.py,并做如下修改:

  1. 导入模型结构,如from deepctr_torch.models.ccpm import CCPM
  2. 根据模型结构传入不同的入参初始化网络,如model = CCPM(feature_columns, feature_columns, device=device)
  3. 根据网络是否支持dense_feature,修改网络的输入。

5

AutoInt

6

CCPM

7

DCN

8

DeepFM

9

DIN

10

FiBiNET

11

MLR

12

NFM

13

ONN

14

PNN

15

WDL

16

xDeepFM

17

BERT

https://github.com/codertimo/BERT-pytorch/tree/d10dc4f9d5a6f2ca74380f62039526eb7277c671

  • 迁移完成后,该工程在需要安装才能使用,安装步骤如下:
    • 去除requirements.txt文件中的torch项。
    • 执行python3 setup.py install
  • 具体使用方式详见仓库README。

18

BEiT

https://github.com/microsoft/unilm/tree/9cbfb3e40eedad33a8d2f1f15c4a1e26fa50a5b1

  • 迁移前进行以下操作。
    • 把模型源码下载后只保留beit文件夹。
    • 下载开源代码库pytorch-image-models0.3.3版本的代码,将其中的timm文件夹移至beit文件夹下
  • 迁移后,由于不能将PyTorch模型权重迁移为MindSpore模型权重,需要注释utils.py的第550和560行代码。

19

BiT-M-R101x1

https://github.com/google-research/big_transfer/tree/140de6e704fd8d61f3e5ea20ffde130b7d5fd065

20

BiT-M-R101x3

21

BiT-M-R152x2

22

BiT-M-R152x4

23

BiT-M-R50x1

24

BiT-M-R50x3

25

BiT-S-R101x1

26

BiT-S-R101x3

27

BiT-S-R152x2

28

BiT-S-R152x4

29

BiT-S-R50x1

30

BiT-S-R50x3

31

CenterNet-ResNet50

https://github.com/bubbliiiing/centernet-pytorch/tree/91b63b9d0fef2e249fbddee8266c79377f0c7946

  • 迁移后根据仓库readme处理数据集。
  • 由于没有训练好的mindspore模型权重,因此需要将train.py中的model_path置为空。

32

CenterNet-HourglassNet

33

Conformer-tiny

https://github.com/pengzhiliang/Conformer/tree/815aaad3ef5dbdfcf1e11368891416c2d7478cb1

  • 迁移前需要将timm库(推荐0.3.2版本)放到原始代码根目录下。
  • 由于框架限制,当前不支持--repeated-aug,所以训练时需要使用--no-repeated-aug参数。

34

Conformer-small

35

Conformer-base

36

DeiT-tiny

37

DeiT-small

38

DeiT-base

39

CvT-13

https://github.com/microsoft/CvT/tree/f851e681966390779b71380d2600b52360ff4fe1

  • 迁移前需要将timm库(推荐0.3.2版本)和einops库放到原始代码根目录下。
  • 迁移前修改./run.sh中内容:
    • 将train()中训练启动方式(4~10行)改为python3 tools/train.py ${EXTRA_ARGS}
    • 将test()中测试启动方式(15~21行)改为python3 tools/test.py ${EXTRA_ARGS}

40

CvT-21

41

CvT-W24

42

albert-base-v1

https://github.com/huggingface/transformers/tree/49cd736a288a315d741e5c337790effa4c9fa689

迁移前,需要把原仓库的模板文件移走,这些文件本质不是python文件却以.py后缀命名。

mv templates ../  
迁移后,请进行以下修改:
  • 为避免出现list out of range错误,对src/transformers/configuration_utils.py的d["torch_dtype"] = x2ms_adapter.tensor_api.split(str(d["torch_dtype"]), ".")[1]语句取消索引的使用:
    修改后:
    d["torch_dtype"] = x2ms_adapter.tensor_api.split(str(d["torch_dtype"]), ".")
  • 对src/transformers/modeling_utils.py的model_to_save.config.torch_dtype = x2ms_adapter.tensor_api.split(str(dtype), ".")[1]语句取消索引的使用:

    修改后:

    model_to_save.config.torch_dtype = x2ms_adapter.tensor_api.split(str(dtype), ".")
  • 将./src/transformers/utils/import_utils.py中的is_torch_available()定义返回值改为“True”来走原来的PyTorch流程:

    修改前:

    def is_torch_available():
        return _torch_available

    修改后:

    def is_torch_available():
        return True

43

albert-large-v1

44

albert-xlarge-v1

45

albert-xxlarge-v1

46

albert-Text classification

47

albert-TokenClassification

48

albert-QA

49

albert-MultipleChoice

50

bert-base-uncased

51

bert-large-uncased

52

bert-base-QA

53

bert-base-Text classification

54

bert-base-Multiple Choice

55

bert-base-token-classification

56

distilbert-base-uncased

57

distilbert-base-QA

58

distilbert-base-Text classification

59

roberta-base

60

roberta-large

61

roberta-base-Multiple Choice

62

roberta-base-Text classification

63

roberta-base-token-classification

64

roberta-base-QA

65

xlm-mlm-en-2048

66

xlm-mlm-ende-1024

67

xlm-mlm-enro-1024

68

xlm-clm-enfr-1024

69

xlm-Text classification

70

xlm-Roberta-base

71

xlm-roberta-large

72

xlm-roberta-Text classification

73

Xlm-reberta-token-classification

74

xlm-roberta-QA

75

xlnet-base-cased

76

xlnet-large-cased

77

XLNet-base-Text classification

78

XLNet-base-token-classification

79

XLNet-base-Multiple Choice

80

XLNet-base-QA

81

DistilRoBERTa

迁移后,请修改./src/transformers/utils/import_utils.py中的is_torch_available()定义:

修改前:

def is_torch_available():
    return _torch_available

修改后:

def is_torch_available():
    return True

82

Transform-XL

迁移后,请进行以下修改:

  • 修改./src/transformers/utils/import_utils.py中的is_torch_available()定义:

    修改前:

    def is_torch_available():
        return _torch_available

    修改后:

    def is_torch_available():
        return True
  • MindSpore的dtype转换为字符串类型后的结构和torch的有所不同,因此需要对./src/transformers/modeling_utils.py进行以下修改:

    修改前:

    model_to_save.config.torch_dtype = x2ms_adapter.tensor_api.split(str(dtype), ".")[1]

    修改后:

    model_to_save.config.torch_dtype = str(dtype) 

83

EfficientNet-B0

https://github.com/lukemelas/EfficientNet-PyTorch/tree/7e8b0d312162f335785fb5dcfa1df29a75a1783a

-

84

EfficientNet-B1

85

EfficientNet-B2

86

EfficientNet-B3

87

EfficientNet-B4

88

EfficientNet-B5

89

EfficientNet-B6

90

EfficientNet-B7

91

EfficientNet-B8

92

egfr-att

https://github.com/lehgtrung/egfr-att/tree/0666ee90532b1b1a7a2a179f8fbf10af1fdf862f

-

93

FasterRCNN

https://github.com/AlphaJia/pytorch-faster-rcnn/tree/943ef668facaacf77a4822fe79331343a6ebca2d

  • 支持以下backbone网络:
    • mobilenet
    • resnet-fpn
    • vgg16
    • HRNet
  • 迁移前,进行如下修改。
    • 因为用到torchvision 0.9.0的MultiScaleRoIAlign算子,因此要将该算子所在文件torchvision/ops/poolers.py拷贝到根目录下,且将./utils/train_utils.py和./utils/faster_rcnn_utils.py中用到该算子的地方修改为如下内容。
      from poolers import MultiScaleRoIAlign
    • 由于MindSpore没有torch.utils.data.Subset对应的API,需将./utils/coco_utils.py中涉及该API的代码注释掉,示例如下。
      # if isinstance(dataset, torch.utils.data.Subset):
      #     dataset = dataset.dataset
  • 迁移后,修改如下内容。
    • 由于MindSpore中的BitwiseOr算子不支持UINT8的输入,需对./utils/roi_header_util.py的如下表达式进行修改。
      修改前:
      pos_inds_img | neg_inds_img
      修改后:
      pos_inds_img.astype(mindspore.int32) | neg_inds_img.astype(mindspore.int32)

94

FCOS-ResNet50

https://github.com/zhenghao977/FCOS-PyTorch-37.2AP/tree/2bfa4b6ca57358f52f7bc7b44f506608e99894e6

迁移后需要进行以下修改。

  • 数据集使用VOC数据集,需要修改./train_voc.py代码中第39行数据集路径为实际路径。
  • 由于mindspore中没有对应的scatter算子,因此需要对./model/loss.py文件进行以下修改。
    1. 将125和126行替换为以下代码:
      min_indices = mindspore.ops.ArgMinWithValue(-1)(areas.reshape(-1, areas.shape[-1]))
      tmp = np.arange(0, batch_size * h_mul_w).astype(np.int32)
      indices = mindspore.ops.Concat(-1)((mindspore.ops.ExpandDims()(mindspore.Tensor(tmp), -1), mindspore.ops.ExpandDims()(min_indices[0], -1)))
      reg_targets = mindspore.ops.GatherNd()(ltrb_off.reshape(-1, m, 4), indices) 
    2. 将130行替换为以下代码:
      cls_targets = mindspore.ops.GatherNd()(classes.reshape(-1, m, 1), indices) 
    3. 在文件的第7行导入相应的包:
      import numpy as np 
  • 由于没有mindspore的预训练模型,因此需要将./model/config.py中的pretrained,freeze_stage_1 ,freeze_bn修改为False。

95

FCOS-ResNet101

96

MGN-strong

https://git.openi.org.cn/Smart_City_Model_Zoo/mgn-strong

  • 迁移前需要进行以下修改。
    1. 该模型依赖于torchvision,因此需要将torchvision/目录下的models/文件夹拷贝至./mgn-strong/model/目录下;
    2. 将./mgn-strong/model/models/__init__.py的内容改为:
      from .resnet import *
    3. 修改./mgn-strong/model/mgn.py第7行的import语句:

      修改前:

      from torchvision.models.resnet import resnet50, Bottleneck, resnet101

      修改后:

      from .models.resnet import resnet50, Bottleneck, resnet101
    4. 修改./mgn-strong/loss/triplet.py第83行addmm_调用语句:

      修改前:

      dist.addmm_(1, -2, inputs, inputs.t())
      修改后:
      dist.addmm_(inputs, inputs.t(), beta=1, alpha=-2)
  • 需要在Mindspore 1.7.0上运行。

97

MobileNetV1 SSD

https://github.com/qfgaohao/pytorch-ssd/tree/f61ab424d09bf3d4bb3925693579ac0a92541b0d

MindSpore暂不支持数据集加载中使用Tensor和在模型中对ModuleList使用切片。因此迁移前需要对原始工程文件夹下./vision/ssd/ssd.py进行如下修改。

  • 第57行for循环修改为如下循环。
    for idx in range(start_layer_index, end_layer_index):
          layer = self.base_net[idx]
  • 第143行“self.center_form_priors = center_form_priors”语句前插入“center_form_priors = center_form_priors.asnumpy()”。

98

MobileNetV1 SSD-Lite

99

MobileNetV2 SSD-Lite

100

MobileNetV3-Large SSD-Lite

101

MobileNetV3-Small SSD-Lite

102

SqueezeNet SSD-Lite

103

VGG16 SSD

104

SqueezeNet

https://github.com/weiaicunzai/pytorch-cifar100/tree/2149cb57f517c6e5fa7262f958652227225d125b

105

InceptionV3

106

InceptionV4

107

InceptionResNetV2

108

Xception

109

Attention56

110

StochasticDepth18

111

StochasticDepth34

112

StochasticDepth50

113

StochasticDepth101

114

VGG11

115

VGG13

116

VGG16

117

DenseNet161

118

DenseNet169

119

DenseNet201

120

PreActResNet34

121

PreActResNet50

122

PreActResNet101

123

PreActResNet152

124

ResNeXt152

125

SEResNet34

126

SEResNet50

127

SEResNet101

128

VGG19

https://github.com/kuangliu/pytorch-cifar/tree/49b7aa97b0c12fe0d4054e670403a16b6b834ddd

129

PreActResNet18

130

DenseNet121

131

ResNeXt29_2x64d

132

MobileNet

133

MobileNetV2

134

SENet18

135

ShuffleNetG2

136

GoogleNet

137

DPN92

138

RetineNet-ResNet34

https://github.com/yhenon/pytorch-retinanet/tree/0348a9d57b279e3b5b235461b472d37da5feec3d

  • 由于原始仓库代码中有关于torch版本和加载torch模型的代码,迁移前需要修改原始工程脚本./train.py:
    • 第77~88行的backbone模型选择,pretrained参数都设置为False
    • 删除第18行assert torch.__version__.split('.')[0] == '1'
  • 迁移完成后,由于mindspore反向传递和数据集加载的限制,需要进行以下修改:
    • 在./retinanet/losses.py中25和26行替换成以下代码。
      def print_grad_fn(cell_id, grad_input, grad_output):
          pass
      class FocalLoss(mindspore.nn.Cell):
          def __init__(self):
              super(FocalLoss, self).__init__()
              self.register_backward_hook(print_grad_fn)

139

RetineNet-ResNet50

140

Res2Net

https://github.com/Res2Net/Res2Net-ImageNet-Training/tree/d77c16ff111522c64e918900f100699acc62f706

暂不支持torchvision.models相关接口的迁移,需做以下操作。

修改原始工程:

  1. 创建目录./res2net_pami/models。
  2. 在./res2net_pami/main.py中,将import torchvision.models as models改为import models

141

ResNet18

https://github.com/pytorch/examples/tree/41b035f2f8faede544174cfd82960b7b407723eb/imagenet

暂不支持torchvision.models相关接口的迁移,需做以下操作。

修改原始工程:

  1. 创建目录./imagenet/models。
  2. 从torchvision库(0.6.0版本)中拷贝torchvision/models/resnet.py至./imagenet/models下,删除from .utils import load_state_dict_from_url语句。
  3. 创建./imagenet/models/__init__.py文件,内容为:
    from .resnet import *
  4. ./main.py中,将import torchvision.models as models改为import models

142

ResNet34

143

ResNet50

144

ResNet101

145

ResNet152

146

ResNeXt-50(32x4d)

147

ResNeXt-101(32x8d)

148

Wide ResNet-50-2

149

Wide ResNet-101-2

150

sparse_rcnnv1-resnet50

https://github.com/liangheming/sparse_rcnnv1/tree/65f54808f43c34639085b01f7ebc839a3335a386

迁移后,修改如下内容。
  • ./x2ms_adapter/nn.py中手动修改MultiheadAttention类中初始化函数的batch_size、src_seq_length和tgt_seq_length的值。
  • 对./nets/common.py的if x.requires_grad:语句改为if True:
  • 对./losses/sparse_rcnn_loss.py中linear_sum_assignment函数的item[i]变量转换成numpy。
    indices = linear_sum_assignment(item[i].asnumpy())
  • 对./datasets/coco.py做2点修改:
    • __getitem__定义模块的返回语句return box_info修改为return box_info.img,box_info.labels,box_info.boxes。
    • 修改collect_fn定义模块的for循环。
      image,labels,boxes = item #增加
      img = (image[:, :, ::-1] / 255.0 - np.array(rgb_mean)) / np.array(rgb_std)#item.img改为image
      target = x2ms_np.concatenate([labels[:, None], boxes], axis=-1)#item.labels改为labels,item.boxes改为boxes

151

sparse_rcnnv1-resnet101

152

ShuffleNetV2

https://github.com/megvii-model/ShuffleNet-Series/tree/aa91feb71b01f28d0b8da3533d20a3edb11b1810

-

153

ShuffleNetV2+

154

SMSD

https://git.openi.org.cn/PCLNLP/Sarcasm_Detection/src/commit/54bae1f2306a4d730551b4508ef502cfdbe79918

迁移前需要进行以下操作:

  • 在./SMSD/目录中新建state_dict文件夹。
  • 在./SMSD/models/__init__.py中添加如下语句导入SMSD_bi模型。
    from models.SMSD_bi import SMSD_bi

运行迁移后代码可通过--repeat参数控制训练重复次数(以SMSD_bi模型为例):

python3 train.py --model_name SMSD_bi --repeat 1

155

SMSD_bi

156

Swin-Transformer

https://github.com/microsoft/Swin-Transformer/tree/5d2aede42b4b12cb0e7a2448b58820aeda604426

  • 迁移前需要将timm库代码放到原始代码根目录下。
  • timm库版本推荐0.4.12。
  • 当前--cfg参数只支持以下四个配置文件:
    • swin_tiny_patch4_window7_224.yaml
    • swin_tiny_c24_patch4_window8_256.yaml
    • swin_small_patch4_window7_224.yaml
    • swin_base_patch4_window7_224.yaml

157

Transformer

https://github.com/SamLynnEvans/Transformer/tree/e06ae2810f119c75aa34585442872026875e6462

需要对于该代码仓中脚本依赖的torchtext库进行迁移并有如下注意事项:

  • 拷贝迁移后的torchtext_x2ms到脚本文件夹。
  • 将torchtext_x2ms重命名为torchtext,以保证用户调用的是迁移后的torchtext。
  • torchtext版本建议使用0.6.0。

158

UNet

https://github.com/milesial/Pytorch-UNet/tree/e1a69e7c6ce18edd47271b01e4aabc03b436753d

-

159

RCNN-Unet

https://github.com/bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets/tree/c050f5eab6778cba6dcd8f8a68b74c9e62a698c8

迁移前需要进行以下操作:

  • 由于MindSpore求导存在语法限制,./pytorch_run.py中249和252行的注释需要修改为4空格倍数对齐。
  • 模型要求输入图片大小为16的倍数,因此当数据集图片大小不满足16倍数时,需取消./pytorch_run.py中121、122行和505、506行的注释,将图片缩放裁剪为16倍数。
  • 当数据集label图片通道为1时,需要在./pytorch_run.py的293行尾加入.convert('RGB')将图片转换为3通道。
  • 由于MindSpore中使用ModuleList会导致子层的权重名称改变,需要将./pytorch_run.py第350行的torch.nn.ModuleList改为list,避免checkpoint文件保存后无法重新加载。

160

Attention Unet

161

RCNN-Attention Unet

162

Nested Unet

163

ViT-B_16

https://github.com/jeonsworld/ViT-pytorch/tree/460a162767de1722a014ed2261463dbbc01196b6

数据集需要使用cifar-10-bin,可从https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz获取。

164

ViT-B_32

165

ViT-L_16

166

ViT-L_32

167

ViT-H_14

168

R50-ViT-B_16

169

YOLOv3

https://github.com/ultralytics/yolov3/tree/ae37b2daa74c599d640a7b9698eeafd64265f999

迁移完成后进行如下修改。

  • 对./models/yolo.py:
    class Detect(mindspore.nn.Cell):
        stride = None #删除
        onnx_dynamic = False 
        def __init__(self, …):
            …
    	self.stride = None #新增
  • 对./utils/loss.py的build_targets函数:
    修改前
    gij = x2ms_adapter.tensor_api.long((…))
    gi, gj = gij.T
    …
    tbox.append(…)
    修改后
    gij = x2ms_adapter.tensor_api.long((…)).T
    gi, gj = gij
    …
    gij = gij.T
    tbox.append(…)
  • 对./val.py中run函数:
    • 删除“path, shape = Path(paths[si]), shapes[si][0]”。
    • 删除scale_coords函数的调用处。
    • 删除“callbacks.run('on_val_image_end',…)”。
  • 将./models/目录下对应模型配置文件{model_name}.yaml中所有nn.*修改为x2ms_adapter.nn.*
  • 运行多卡场景下,将train.py中“val_loader = create_dataloader(…)”的rect参数修改为False。

170

YOLOv3-Tiny

171

YOLOv3-SSP

172

YOLOv4

https://github.com/WongKinYiu/PyTorch_YOLOv4/tree/eb5f1663ed0743660b8aa749a43f35f505baa325

迁移完成后进行如下修改。

  • 修改./model/models.py的create_module函数。
    修改前:
    module_list[j][0].bias = mindspore.Parameter(bias_, …)
    修改后:
    module_list[j][0].bias = mindspore.Parameter(bias.reshape(bias_.shape), …)
  • 修改./utils/datasets.py
    修改前:
    if os.path.isfile(cache_path): 
    修改后:
     if False:
  • 对./utils/loss.py的build_targets函数:
    修改前
    gij = x2ms_adapter.tensor_api.long((…))
    gi, gj = gij.T
    …
    tbox.append(…)
    修改后
    gij = x2ms_adapter.tensor_api.long((…)).T
    gi, gj = gij
    …
    gij = gij.T
    tbox.append(…)
  • 对./train.py,
    • if '.bias' in k: 修改为if '.bias' in k or '.beta' in k:
    • 字符串'Conv2d.weight'修改为'.weight'
  • 运行多卡场景下,将./train.py中“testloader = create_dataloader(…)”的rect参数修改为False。

173

YOLOv4-tiny

174

YOLOv4-pacsp

175

YOLOv4-paspp

176

YOLOv4-csp-leaky

177

YOLOv5l

https://github.com/ultralytics/yolov5/tree/8c420c4c1fb3b83ef0e60749d46bcc2ec9967fc5

迁移完成后进行如下修改。

  • 对./models/yolo.py:
    class Detect(mindspore.nn.Cell):
        stride = None #删除
        …
        def __init__(self, …):
            …
    	self.stride = None #新增
  • 对./utils/loss.py的build_targets函数:
    修改前
    gij = x2ms_adapter.tensor_api.long((…))
    gi, gj = gij.T
    …
    tbox.append(…)
    修改后
    gij = x2ms_adapter.tensor_api.long((…)).T
    gi, gj = gij
    …
    gij = gij.T
    tbox.append(…)
  • 对./val.py中run函数:
    • 删除“path, shape = Path(paths[si]), shapes[si][0]”。
    • 删除scale_coords函数的调用处。
    • 删除“callbacks.run('on_val_image_end',…)”。
  • 将./models/目录下对应模型配置文件{model_name}.yaml中所有nn.*修改为x2ms_adapter.nn.*
  • 运行多卡场景下,将./train.py中“val_loader = create_dataloader(…)”的rect参数修改为False。

178

YOLOv5m

179

YOLOv5n

180

YOLOv5s

181

YOLOv5x

182

YOLOX

https://github.com/bubbliiiing/yolox-pytorch/tree/1448e849ac6cdd7d1cec395e30410f49a83d44ec

迁移后,修改如下内容。
  • 注释./train.py第341行代码。
    #'adam'  : optim_register.adam(pg0, Init_lr_fit, betas = (momentum, 0.999))
  • 进行训练前,防止hccl超时,执行如下命令。
    export HCCL_CONNECT_TIMEOUT=3000

183

AAGCN-ABSA

https://git.openi.org.cn/PCLNLP/SentimentAnalysisNLP/src/commit/7cf38449dad742363053c4cc380ebfe33292184d

-

184

CAER-ABSA

  • 依赖三方库pytorch-pretrained-bert,下载并将其子目录pytorch_pretrained_bert拷贝至SentimentAnalysisNLP/目录下。
  • 将./SentimentAnalysisNLP/pytorch_pretrained_bert/modeling.py中158行的BertLayerNorm类定义移至try-except语块外。

185

GIN-ABSA

  • 依赖三方库pytorch-pretrained-bert,下载并将其子目录pytorch_pretrained_bert拷贝至SentimentAnalysisNLP/目录下。
  • 由于MindSpore中不支持在数据处理过程中创建Tensor,需要在./GIN-ABSA/data_utils.py中去除数据集初始化中的tensor创建,包括:去除147行的torch.tensor()操作和234行的torch.tensor()操作。

186

Scon-ABSA

  • 依赖huggingface中bert-base-uncased的预训练权重,需要下载pytorch_model.bin,转换成MindSpore格式的pytorch_model.ckpt后,在脚本中加载该转换后的模型权重。
  • 依赖三方库pytorch-pretrained-bert,下载并将其子目录pytorch_pretrained_bert拷贝至SentimentAnalysisNLP/目录下。
  • 将./pytorch_pretrained_bert/modeling.py中158行的 BertLayerNorm类定义移至try-except语块外。

187

Trans-ECE

  • 依赖huggingface中bert-base-chinese的预训练权重,需要下载到当前目录的bert-base-chinese下,并将模型权重pytorch_model.bin转换到MindSpore格式的pytorch_model.ckpt。
  • 由于原始代码中存在缺陷,需要将./Trans-ECE/Run.py中48、49行使用list包裹filter,并删除54行多余的trans_optimizer参数。
  • 由于当前不支持自定义优化器,需要将./Trans-ECE/Run.py中55行的BertAdam改为optim.Adam优化器。

188

PyramidNet 101

https://github.com/dyhan0920/PyramidNet-PyTorch/tree/5a0b32f43d79024a0d9cd2d1851f07e6355daea2

迁移前,进行如下修改。

  • 由于原始仓库代码对于python版本和pytorch版本有限制,需要根据https://github.com/dyhan0920/PyramidNet-PyTorch/issues/5进行适配性修改。
  • 由于迁移后代码不需要torchvision模块,需要注释train.py的23~25行。
    #model_names = sorted(name for name in models.__dict__
    #    if name.islower() and not name.startswith("__")
    #    and callable(models.__dict__[name]))

189

PyramidNet 164 bottleneck

190

PyramidNet 200 bottleneck

表2 TensorFlow 2模型列表

序号

模型

原始训练工程代码链接参考

备注

1

ALBERT_base_v2

https://github.com/huggingface/transformers/tree/49cd736a28

迁移前,需要把原仓库的模板文件移走,这些文件本质不是python文件却以.py后缀命名。

mv templates ../  

迁移后,请进行以下修改:

  • 对./examples/tensorflow/language-modeling/run_mlm.py:
    • 补充以下导包语句:
      from x2ms_adapter.keras.losses import SparseCategoricalCrossentropy
    • 将DataCollatorForLanguageModeling参数return_tensors的值"tf"改为"np":

      修改前:

      data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability, return_tensors="tf")

      修改后:

      data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability, return_tensors="np")
    • 修改model.compile调用的参数:

      修改前:

      model.compile(optimizer=optimizer)

      修改后:

      model.compile(optimizer=optimizer, loss=SparseCategoricalCrossentropy(True))
  • 修改./src/transformers/modeling_tf_utils.py的dtype_byte_size方法:

    修改前:

    bit_search = re.search("[^\d](\d+)$", dtype.name)

    修改后:

    bit_search = re.search("[^\d](\d+)$", str(dtype))

2

ALBERT_large_v2

3

ALBERT_xlarge_v2

4

ALBERT_xxlarge_v2

5

ALBERT_base_v1

6

ALBERT_large_v1

7

ALBERT_xlarge_v1

8

ALBERT_xxlarge_v1

9

roberta-base

10

roberta-large

11

RBT6

12

RBT4

13

RBTL3

14

RBT3

15

DenseNet_121

https://github.com/calmisential/Basic_CNNs_TensorFlow2/tree/f063c84451f12e904f9c91c51278be52afccb0c2

  • 请根据需要,在./configuration.py中进行epoch、batch_size、数据集路径等配置。
  • 迁移前,将./models/__init__.py文件的regnet.RegNet代码行注释。
    #regnet.RegNet()

16

DenseNet_169

17

EfficientNet_B0

18

EfficientNet_B1

19

Inception_V4

20

MobileNet_V1

21

MobileNet_V2

22

MobileNet_V3_Large

23

MobileNet_V3_Small

24

ResNet_101

25

ResNet_152

26

ResNet_18

27

ResNet_34

28

ResNet_50

29

ResNext_101

30

ResNext_50

31

Shufflenet_V2_x0_5

32

Shufflenet_V2_x1_0

33

AFM

https://github.com/ZiyaoGeng/Recommender-System-with-TF2.0/tree/1d2aa5bf551873d5626539c196705db46d55c7b6

各个网络文件夹均依赖./data_process/目录,请直接迁移Recommender-System-with-TF2.0/目录或将./data_process/复制至网络文件夹下后再进行迁移。

34

Caser

35

DCN

36

Deep_Crossing

37

DeepFM

38

DNN

39

FFM

40

FM

41

MF

42

NFM

43

PNN

44

WDL

45

BiLSTM-CRF

https://github.com/kangyishuai/BiLSTM-CRF-NER/tree/84bde29105b13cd8128bb0ae5d043c4712a756cb

  • 训练需在MindSpore1.7 版本中执行。
  • 根据原训练工程README.md下载完整数据集,解压数据集并将里面的文件拷贝至./data中。
  • 迁移后,视训练情况,将./main.py中的batch_size,hidden_num和embedding_size参数值适当调小,如以下示例:
    params = {
        "maxlen": 128,
        "batch_size": 140,
        "hidden_num": 64,
        "embedding_size": 64,
        "lr": 1e-3,
        "epochs": 10
    }

46

FCN

https://github.com/YunYang1994/TensorFlow2.0-Examples/tree/299fd6689f242d0f647a96b8844e86325e9fcb46/5-Image_Segmentation/FCN

./parser_voc.py中使用的scipy.misc.imread方法为scipy 1.2.0以前的旧版本API,mindspore最低兼容scipy 1.5.2,因此请使用scipy的官方弃用警告中推荐的imageio.imread。

47

GoogleNet

https://github.com/marload/ConvNets-TensorFlow2/tree/29411e941c4aa72309bdb53c67a6a2fb8db57589

迁移后的load_data()接口需要通过data_dir参数指定数据集路径或将数据集放置在默认路径~/x2ms_datasets/cifar10/cifar-10-batches-py下。

48

SqueezeNet

49

Unet

https://github.com/YunYang1994/TensorFlow2.0-Examples/tree/299fd6689f242d0f647a96b8844e86325e9fcb46/5-Image_Segmentation/Unet

数据集请使用Membrane,可从该训练工程的README.md中获取。

50

Vit

https://github.com/tuvovan/Vision_Transformer_Keras/tree/6a1b0959a2f5923b1741335aca5bc2f8dcc7c1f9

  • 迁移后的load()接口需要通过data_dir参数指定数据集路径或将数据集放置在默认路径~/x2ms_datasets/cifar10/cifar-10-batches-bin下。
  • 需要删除train.py中“early_stop = tf.keras.callbacks.EarlyStopping(patience=10),”中的逗号以保证callback对象为单一的实例而非元组。
表3 TensorFlow 1模型列表

序号

模型

原始训练工程代码链接参考

备注

1

ALBERT-base-v2

https://github.com/google-research/ALBERT/tree/a36e095d3066934a30c7e2a816b2eeb3480e9b87

迁移前,需要进行以下修改:

  • 在./classifier_utils.py,将以下语句
    if t.dtype == tf.int64:

    修改为

    if t.dtype == "int64":
  • 在./optimization.py,进行以下修改:
    • optimizer = AdamWeightDecayOptimizer(

      修改为

      optimizer = tf.keras.optimizers.Adam(
    • train_op = tf.group(train_op, [global_step.assign(new_global_step)])

      修改为

      train_op = tf.group(train_op, global_step)
  • 数据集使用Glue-MNLI时,record数据集需参考README自行生成。

2

ALBERT-large-v2

3

ALBERT-xlarge-v2

4

ALBERT-xxlarge-v2

5

Attention-Based Bidirectional RNN

https://github.com/dongjun-Lee/text-classification-models-tf/tree/768ea13547104f56786c52f0c6eb99912c816a09

由于dropout算子在mindspore中已经对training参数做了处理,所以需要将模型定义文件中self.keep_prob属性直接修改为0.5,无需通过where判断。

6

Character-level CNN

7

RCNN

8

Very Deep CNN

9

Word-level Bidirectional RNN

10

Word-level CNN

11

BERT-Tiny

https://github.com/google-research/bert/tree/eedf5716ce1268e56f0a50264a88cafad334ac61

迁移前,请进行如下修改:

  • ./run_classifier.py文件中:
    • 将hidden_size = output_layer.shape[-1].value的“.value”删除(源代码592行)。
      hidden_size = output_layer.shape[-1]
    • 注释以下代码(源代码869、870行):
      #file_based_convert_examples_to_features(
      #     train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
    • 在_decode_record函数中,将源代码529行
      if t.dtype == tf.int64:

      改为

      if t.dtype == 'int64’ 
  • 对./optimization.py:
    • 将AdamWeightDecayOptimizer的实例化代码替换成optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
      #optimizer = AdamWeightDecayOptimizer(
      ##)
      optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
    • 修改前:
      train_op = tf.group(train_op, [global_step.assign(new_global_step)])

      修改后:

      train_op = tf.group(train_op, global_step)

12

BERT-Mini

13

BERT-Small

14

BERT-Medium

15

BERT-Base

16

RBT6

https://github.com/bojone/bert4keras/tree/9c1c916def4d515a046c414

迁移前,需进行以下修改:

  • 在./examples/task_language_model.py中:
    • 修改checkpoint_path,config_path,dict_path,输入的训练数据,batch_size的值。
    • txt = open(txt, encoding='gbk').read()

      改为

      txt = open(txt, encoding='utf8').read()
  • 对./bert4keras/layers.py,在from keras.layers import *语句后增加以下导入语句:
    from keras.layers import Input, Dropout, Lambda, Add, Dense, Activation
  • 对./bert4keras/models. py,在from bert4keras.layers import *语句后增加以下导入语句:
    from bert4keras.layers import Input, Dropout, Lambda, Add, K, Dense, Activation

17

RBT4

18

RBTL3

19

RBT3

20

RoBERTa-wwm-ext-large

21

RoBERTa-wwm-ext

22

Bi-LSTM-CRF

https://github.com/fzschornack/bi-lstm-crf-tensorflow/tree/5181106

  • 迁移前需要新建./bi-lstm-crf-tensorflow.py文件,并将bi-lstm-crf-tensorflow.ipynb中的代码拷贝至该新建的Python文件中。
  • 迁移后,视训练情况修改./bi-lstm-crf-tensorflow.py中num_units变量的赋值语句值。以修改为64为例:
    #num_units = 128
    num_units = 64

23

CNN-LSTM-CTC

https://github.com/watsonyanghx/CNN_LSTM_CTC_Tensorflow/tree/6999cd19285e7896cfe77d50097b0d96fb4e53e8

  • 迁移前,将utils.py中的43行注释
    #tf.app.flags.DEFINE_string('log_dir', './log', 'the logging dir')
  • 迁移后,适当调小./utils.py中validation_steps的值,以便训练时快速观察模型收敛效果,以修改为50为例:
    x2ms_FLAGS.define_integer('validation_steps', 50, 'the step to validation')
  • 在工程根目录下,创建./imgs/train, ./imgs/val文件夹,放入指定训练、测试数据。

24

LeNet

https://github.com/Jackpopc/aiLearnNotes/tree/7069a705bbcbea1ac24

  • 迁移后,自行下载MNIST数据集,放至执行命令的目录下。解压MNIST里的所有.gz文件并删除原gz文件。
  • 若网络收敛不佳,可尝试调小学习率LR、增大训练周期EPOCHS。

25

AlexNet

26

ResNet-18

https://github.com/taki0112/ResNet-Tensorflow/tree/f395de3a53d

迁移前需要安装jedi依赖。迁移后需要做以下适配。

  • 迁移后的load()接口需要通过data_dir参数指定数据集路径或将需要的数据集放置在默认路径:
    • ~/x2ms_datasets/cifar100/cifar-100-python
    • ~/x2ms_datasets/cifar10/cifar-10-batches-py
    • ~/x2ms_datasets/mnist.npz
    • ~/x2ms_datasets/fashion-mnist
  • 由于MindSpore不支持一次性做大批量数据的测试。
    • 需要自行修改代码将测试集分批次做测试。
    • 测试集的placeholder的shape第一维改为1。

27

ResNet-34

28

ResNet-50

29

ResNet-101

30

ResNet-152

搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词