下载
中文
注册

WholeReduce

函数功能

全归约指令分为三种:

  • WholeReduceMax:每个repeat内所有数据求最大值以及其索引index。(返回的索引值每个repeat内都会从0开始计数)
  • WholeReduceMin:每个repeat内所有数据求最小值以及其索引index。(返回的索引值每个repeat内都会从0开始计数)
  • WholeReduceSum:每个repeat内所有数据求和。

函数原型

表1 原型定义

接口名

原型定义

WholeReduceMax

  • mask参数使用逐bit模式,该模式的具体介绍请参考表3中的mask参数说明:

    template <typename T, bool isSetMask = true>

    __aicore__ inline void WholeReduceMax(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal, const uint64_t mask[2], const int32_t repeatTimes, const int32_t dstRepStride, const int32_t srcBlkStride, const int32_t srcRepStride, ReduceOrder order = ReduceOrder::ORDER_VALUE_INDEX)

  • mask参数使用连续模式,该模式的具体介绍请参考表3中的mask参数说明:

    template <typename T, bool isSetMask = true>

    __aicore__ inline void WholeReduceMax(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal, const int32_t mask, const int32_t repeatTimes, const int32_t dstRepStride, const int32_t srcBlkStride, const int32_t srcRepStride, ReduceOrder order = ReduceOrder::ORDER_VALUE_INDEX)

WholeReduceMin

  • mask参数使用逐bit模式,该模式的具体介绍请参考表3中的mask参数说明:

    template <typename T, bool isSetMask = true>

    __aicore__ inline void WholeReduceMin(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal, const uint64_t mask[2], const int32_t repeatTimes, const int32_t dstRepStride, const int32_t srcBlkStride, const int32_t srcRepStride, ReduceOrder order = ReduceOrder::ORDER_VALUE_INDEX)

  • mask参数使用连续模式,该模式的具体介绍请参考表3中的mask参数说明:

    template <typename T, bool isSetMask = true>

    __aicore__ inline void WholeReduceMin(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal, const int32_t mask, const int32_t repeatTimes, const int32_t dstRepStride, const int32_t srcBlkStride, const int32_t srcRepStride, ReduceOrder order = ReduceOrder::ORDER_VALUE_INDEX)

WholeReduceSum

  • mask参数使用逐bit模式,该模式的具体介绍请参考表3中的mask参数说明:

    template <typename T, bool isSetMask = true>

    __aicore__ inline void WholeReduceSum(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal,const uint64_t mask[2], const int32_t repeatTimes, const int32_t dstRepStride, const int32_t srcBlkStride, const int32_t srcRepStride)

  • mask参数使用连续模式,该模式的具体介绍请参考表3中的mask参数说明:

    template <typename T, bool isSetMask = true>

    __aicore__ inline void WholeReduceSum(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal, const int32_t mask, const int32_t repeatTimes, const int32_t dstRepStride, const int32_t srcBlkStride, const int32_t srcRepStride)

参数说明

表2 模板参数说明

参数名

描述

T

操作数数据类型。

isSetMask

是否在接口内部设置mask。

  • true,表示在接口内部设置mask。
  • false,表示在接口外部设置mask,开发者需要使用SetVectorMask接口设置mask值。这种模式下,本接口入参中的mask值必须设置为MASK_PLACEHOLDER。
表3 参数说明

参数名称

输入/输出

含义

dstLocal

输出

目的操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

Atlas 训练系列产品,支持的数据类型为:half,注意,对于WholeReduceSum,支持数据类型half/float

Atlas推理系列产品AI Core,支持的数据类型为:half/float

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float

Atlas 200I/500 A2推理产品,支持的数据类型为:half/float

srcLocal

输入

源操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

源操作数的数据类型需要与目的操作数保持一致。

Atlas 训练系列产品,支持的数据类型为:half,注意,对于WholeReduceSum,支持数据类型half/float

Atlas推理系列产品AI Core,支持的数据类型为:half/float

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float

Atlas 200I/500 A2推理产品,支持的数据类型为:half/float

mask

输入

mask用于控制每次迭代内参与计算的元素。

  • 连续模式:表示前面连续的多少个元素参与计算。数据类型为uint64。取值范围和操作数的数据类型有关,数据类型不同,每次迭代内能够处理的元素个数最大值不同。当操作数为16位时,mask∈[1, 128];当操作数为32位时,mask∈[1, 64]。
  • 逐bit模式:可以按位控制哪些元素参与计算,bit位的值为1表示参与计算,0表示不参与。参数类型为长度为2的uint64_t类型数组。

    例如,mask=[8, 0],8=0b1000,表示仅第4个元素参与计算。

    参数取值范围和操作数的数据类型有关,数据类型不同,每次迭代内能够处理的元素个数最大值不同。当操作数为16位时,mask[0]、mask[1]∈[0, 264-1];当操作数为32位时,mask[1]为0,mask[0]∈[0, 264-1]。

repeatTimes

输入

重复迭代次数。取值范围为[0, 255]。

矢量计算单元,每次读取连续的256 Bytes数据进行计算,为完成对输入数据的处理,必须通过多次迭代(repeat)才能完成所有数据的读取与计算。repeatTimes表示迭代的次数。

关于该参数的具体描述请参考基础API通用说明

dstRepStride

输入

相邻迭代间,目的操作数相同block地址步长。即目的操作数每次迭代跳过的block数目。

对于WholeReduceMax和WholeReduceMin,单位为dstLocal数据类型所占Bytes的两倍。比如当dstLocal为half时,单位为4Bytes,即每次迭代目的操作数跳过4Bytes大小,需要注意的是,当order取值ORDER_ONLY_VALUE时,单位为dstLocal数据类型所占Bytes长度,不再是两倍。当取值为ORDER_ONLY_INDEX时,单位固定为uint32_t类型所占Bytes长度。

对于WholeReduceSum,单位为dstLocal数据类型所占Bytes。比如当dstLocal为half时,单位为2Bytes,即每次迭代目的操作数跳过2Bytes大小。

注意,此参数值Atlas 训练系列产品不支持配置0。

srcBlkStride

输入

单次迭代内,源操作数不同block间地址步长。详细说明请参考Block stride(同一迭代内不同datablock的地址步长)

srcRepStride

输入

相邻迭代间,源操作数相同block地址步长,即源操作数每次迭代跳过的block数目。详细说明请参考Repeat stride(相邻迭代间相同datablock的地址步长)

order

输入

使用order参数指定dstLocal中index与value的相对位置以及返回结果行为(仅WholeReduceMax/WholeReduceMin支持),参数为ReduceOrder类型,默认值为ORDER_VALUE_INDEX。取值范围如下:

  • ORDER_VALUE_INDEX:表示value位于低半部,返回结果存储顺序为[value, index]。该参数支持如下型号:

    Atlas 训练系列产品

    Atlas推理系列产品AI Core

    Atlas A2训练系列产品/Atlas 800I A2推理产品

    Atlas 200I/500 A2推理产品

  • ORDER_INDEX_VALUE:表示index位于低半部,返回结果存储顺序为[index, value]。该参数支持如下型号:

    Atlas推理系列产品AI Core

    Atlas A2训练系列产品/Atlas 800I A2推理产品

  • ORDER_ONLY_VALUE:表示只返回最值,返回结果存储顺序为[value]。该参数支持如下型号:

    Atlas A2训练系列产品/Atlas 800I A2推理产品

  • ORDER_ONLY_INDEX:表示只返回最值索引,返回结果存储顺序为[index]。该参数支持如下型号:

    Atlas A2训练系列产品/Atlas 800I A2推理产品

返回值

支持的型号

Atlas 训练系列产品

Atlas推理系列产品AI Core

Atlas A2训练系列产品/Atlas 800I A2推理产品

Atlas 200I/500 A2推理产品

约束说明

  • srcLocal和dstLocal地址对齐要求请见 :通用约束
  • 为节省地址空间,开发者可以定义一个Tensor,供源操作数与目的操作数同时使用(即地址重叠),相关约束如下:
    • 对于单次repeat(repeatTimes=1),且源操作数与目的操作数之间要求100%完全重叠,不支持部分重叠。
    • 对于多次repeat(repeatTimes>1),操作数与目的操作数之间存在依赖的情况下,即第N次迭代的目的操作数是第N+1次的源操作数,不支持地址重叠的。
  • 对于WholeReduceMax/WholeReduceMin接口,dstLocal结果存储顺序由order决定,默认为最值,最值索引。返回结果中索引index数据是按照dstLocal的数据类型进行存储的,比如dstLocal使用half类型时,index是按照half类型进行存储的,读取时需要使用reinterpret_cast方法转换到整数类型,若输入数据类型是half,需要使用reinterpret_cast<uint16_t>,若输入是float,需要使用reinterpret_cast<uint32_t>。比如完整样例一中,前两个计算结果为[9.980e-01 5.364e-06], 5.364e-06需要使用reinterpret_cast方法转换得到索引值90。
  • 对于WholeReduceMax/WholeReduceMin接口,由于order参数值Atlas 200/500 A2推理产品不支持,若需要计算index索引值,需要配置dstRepStride>1,比如当dstRepStride=2时,dstLocal结果会返回最值,最值索引。
  • 对于WholeReduceSum,其内部的相加方式采用二叉树方式,两两相加:

    假设源操作数为128个float16的数据[data0,data1,data2...data127],一个repeat可以计算完,计算过程如下。

    1. data0和data1相加得到data00,data2和data3相加得到data01...data124和data125相加得到data62,data126和data127相加得到data63;
    2. data00和data01相加得到data000,data02和data03相加得到data001...data62和data63相加得到data031;
    3. 以此类推,得到目的操作数为1个float16的数据[data]。

    需要注意的是两两相加的计算过程中,计算结果大于65504时结果保存为65504。例如源操作数为[60000,60000,-30000,100],首先60000+60000溢出,结果为65504,第二步计算-30000+100=-29900,第四步计算65504-29900=35604。

调用示例

  • tensor高维切分计算样例-mask连续模式
    // dstLocal,srcLocal均为half类型,srcLocal的计算数据量为512,连续排布,计算结果也需要连续排布,使用tensor高维切分计算接口,设定mask为最多的128个全部元素参与计算
    // 根据以上信息,推断出repeatTimes为4,dstRepStride为1,srcBlkStride为1,srcRepStride为8
    // 若求最大值及索引,并且需要存储顺序为[value, index]的结果,可以使用默认order,接口示例为:
    WholeReduceMax<half>(dstLocal, srcLocal, 128, 4, 1, 1, 8);
    // 若求最大值及索引,并且需要存储顺序为[index, value]的结果,接口示例为:
    WholeReduceMax<half>(dstLocal, srcLocal, 128, 4, 1, 1, 8, ReduceOrder::ORDER_INDEX_VALUE);
    
    // 若求和,则接口示例为:
    WholeReduceSum<half>(dstLocal, srcLocal, 128, 4, 1, 1, 8); 
  • tensor高维切分计算样例-mask逐bit模式
    // dstLocal,srcLocal均为half类型,srcLocal的计算数据量为512,连续排布,计算结果也需要连续排布,使用tensor高维切分计算接口,设定mask为最多的128个全部元素参与计算
    // 根据以上信息,推断出repeatTimes为4,dstRepStride为1,srcBlkStride为1,srcRepStride为8
    // 若求最大值及索引,并且需要存储顺序为[value, index]的结果,使用默认order,接口示例为:
    WholeReduceMax<half>(dstLocal, srcLocal, { 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF }, 4, 1, 1, 8);
  • 完整样例一
#include "kernel_operator.h"

namespace AscendC {
class KernelReduce {
public:
    __aicore__ inline KernelReduce() {}
    __aicore__ inline void Init(__gm__ uint8_t* src, __gm__ uint8_t* dstGm)
    {
        srcGlobal.SetGlobalBuffer((__gm__ half*)src);
        dstGlobal.SetGlobalBuffer((__gm__ half*)dstGm);

        repeat = srcDataSize / mask;
        pipe.InitBuffer(inQueueSrc, 1, srcDataSize * sizeof(half));
        pipe.InitBuffer(outQueueDst, 1, dstDataSize * sizeof(half));
    }
    __aicore__ inline void Process()
    {
        CopyIn();
        Compute();
        CopyOut();
    }

private:
    __aicore__ inline void CopyIn()
    {
        LocalTensor<half> srcLocal = inQueueSrc.AllocTensor<half>();
        DataCopy(srcLocal, srcGlobal, srcDataSize);
        inQueueSrc.EnQue(srcLocal);
    }
    __aicore__ inline void Compute()
    {
        LocalTensor<half> srcLocal = inQueueSrc.DeQue<half>();
        LocalTensor<half> dstLocal = outQueueDst.AllocTensor<half>();

        WholeReduceMax<half>(dstLocal, srcLocal, mask, repeat, 1, 1, 8); // 使用默认order

        outQueueDst.EnQue<half>(dstLocal);
        inQueueSrc.FreeTensor(srcLocal);
    }
    __aicore__ inline void CopyOut()
    {
        LocalTensor<half> dstLocal = outQueueDst.DeQue<half>();
        DataCopy(dstGlobal, dstLocal, dstDataSize);
        outQueueDst.FreeTensor(dstLocal);
    }

private:
    TPipe pipe;
    TQue<QuePosition::VECIN, 1> inQueueSrc;
    TQue<QuePosition::VECOUT, 1> outQueueDst;
    GlobalTensor<half> srcGlobal, dstGlobal;
    int srcDataSize = 1024;
    int dstDataSize = 16;
    int mask = 128;
    int repeat = 0;
};
} // namespace AscendC

extern "C" __global__ __aicore__ void reduce_kernel(__gm__ uint8_t* src, __gm__ uint8_t* dstGm)
{
    AscendC::KernelReduce op;
    op.Init(src, dstGm);
    op.Process();
}
输入数据(src_gm):
[0.00787  0.8516   0.01558  0.152    0.887    0.2532   0.2272   0.1295
 0.7207   0.628    0.5522   0.991    0.3164   0.961    0.526    0.5513
 0.03973  0.3293   0.809    0.562    0.915    0.56     0.3464   0.3438
 0.6094   0.1201   0.8384   0.848    0.004436 0.4263   0.01917  0.753
 0.9126   0.2307   0.1066   0.644    0.8657   0.7085   0.7915   0.1707
 0.3806   0.957    0.0483   0.858    0.10675  0.21     0.03345  0.55
 0.3757   0.3281   0.927    0.09406  0.6445   0.985    0.405    0.09393
 0.773    0.7227   0.03714  0.595    0.889    0.0948   0.4202   0.2747
 0.5894   0.3022   0.894    0.675    0.6016   0.938    0.585    0.5244
 0.8643   0.888    0.794    0.636    0.976    0.148    0.7427   0.1742
 0.32     0.0649   0.2954   0.2018   0.833    0.0976   0.4048   0.2861
 0.8765   0.722    0.998    0.03041  0.005512 0.9087   0.9873   0.1436
 0.4812   0.1901   0.78     0.6934   0.2317   0.3782   0.8613   0.808
 0.06885  0.3584   0.5684   0.541    0.5415   0.3096   0.5957   0.9043
 0.7964   0.501    0.4324   0.7544   0.687    0.8447   0.526    0.548
 0.926    0.9106   0.1616   0.183    0.6704   0.642    0.4783   0.1797
 0.2078   0.59     0.4866   0.4683   0.649    0.7266   0.4976   0.8364
 0.6245   0.07385  0.0786   0.586    0.7827   0.3298   0.9497   0.1617
 0.4375   0.3572   0.2896   0.6465   0.1156   0.4905   0.2617   0.8267
 0.2054   0.1415   0.2993   0.8374   0.754    0.942    0.6416   0.1222
 0.1465   0.3335   0.3577   0.6484   0.614    0.5825   0.6807   0.9297
 0.694    0.759    0.908    0.9126   0.4731   0.963    0.3271   0.724
 0.4077   0.335    0.672    0.4219   0.1818   0.843    0.2708   0.0816
 0.457    0.3481   0.67     0.6895   0.6924   0.191    0.2013   0.2484
 0.8833   0.9146   0.4102   0.1063   0.6685   0.804    0.6606   0.2491
 0.34     0.3281   0.823    0.603    0.521    0.6797   0.401    0.5
 0.03683  0.04758  0.507    0.667    0.9014   0.263    0.2477   0.0179
 0.8735   0.007023 0.545    0.758    0.3508   0.6333   0.9375   0.5903
 0.2732   0.0847   0.489    0.196    0.5557   0.403    0.9204   0.3655
 0.5083   0.7515   0.3347   0.6914   0.2185   0.2458   0.5537   0.3457
 0.4878   0.869    0.908    0.0877   0.295    0.9      0.9307   0.05545
 0.4639   0.4001   0.8433   0.4883   0.916    0.7026   0.5063   0.05164
 0.936    0.844    0.2086   0.625    0.0197   0.4312   0.3677   0.983
 0.625    0.004665 0.2479   0.3093   0.9214   0.003672 0.7915   0.921
 0.331    0.01127  0.703    0.6416   0.4053   0.53     0.9688   0.10297
 0.5547   0.07367  0.2305   0.02821  0.8115   0.4202   0.0561   0.0917
 0.04828  0.536    0.0905   0.328    0.8413   0.3696   0.982    0.3733
 0.436    0.753    0.1937   0.8706   0.991    0.273    0.763    0.418
 0.4446   0.513    0.6724   0.1179   0.921    0.756    0.7144   0.6196
 0.9634   0.562    0.3088   0.864    0.709    0.6797   0.2114   0.534
 0.5225   0.1852   0.038    0.5454   0.8823   0.849    0.608    0.7734
 0.7446   0.7236   0.1903   0.1031   0.497    0.57     0.172    0.1907
 0.6333   0.641    0.681    0.2323   0.1007   0.4094   0.3655   0.4248
 0.08044  0.1483   0.08716  0.354    0.128    0.3933   0.775    0.215
 0.728    0.909    0.4204   0.618    0.2517   0.9106   0.3647   0.5977
 0.3445   0.315    0.488    0.99     0.9443   0.6196   0.9287   0.088
 0.9946   0.796    0.7515   0.1912   0.4312   0.7974   0.735    0.01536
 0.7456   0.643    0.484    0.218    0.9272   0.1703   0.1885   0.1982
 0.754    0.902    0.848    0.05832  0.4138   0.6885   0.3853   0.3499
 0.639    0.5786   0.6353   0.5664   0.02621  0.56     0.532    0.08246
 0.733    0.1334   0.0728   0.7817   0.5273   0.126    0.179    0.7334
 0.1565   0.457    0.4807   0.6987   0.5845   0.6206   0.902    0.9277
 0.501    0.6763   0.3418   0.7925   0.07556  0.0929   0.9014   0.3145
 0.04907  0.7188   0.958    0.7275   0.1963   0.1742   0.785    0.518
 0.61     0.1112   0.481    0.10583  0.198    0.181    0.3271   0.2773
 0.2391   0.5625   0.621    0.173    0.05936  0.5654   0.838    0.865
 0.01523  0.6724   0.546    0.737    0.778    0.8613   0.7085   0.8213
 0.08826  0.818    0.4866   0.159    0.4143   0.1007   0.7773   0.487
 0.5225   0.8984   0.4907   0.525    0.4075   0.2632   0.2292   0.134
 0.4622   0.65     0.294    0.607    0.2725   0.2603   0.9326   0.787
 0.9478   0.941    0.3066   0.2944   0.3928   0.73     0.1797   0.2157
 0.609    0.4216   0.8984   0.8477   0.863    0.2478   0.993    0.6274
 0.724    0.03668  0.0991   0.5825   0.662    0.6904   0.7017   0.2379
 0.514    0.1646   0.3245   0.03072  0.3232   0.907    0.9966   0.6396
 0.2969   0.02539  0.66     0.764    0.7803   0.515    0.04074  0.2258
 0.08887  0.1782   0.875    0.1517   0.2351   0.3848   0.5933   0.6875
 0.1969   0.1283   0.06232  0.4348   0.168    0.6904   0.5464   0.12036
 0.885    0.007717 0.5967   0.2856   0.628    0.62     0.854    0.4297
 0.733    0.2274   0.9736   0.01622  0.456    0.4763   0.9707   0.874
 0.8794   0.511    0.1628   0.03458  0.506    0.1464   0.3674   0.1532
 0.786    0.3809   0.406    0.015434 0.901    0.951    0.3018   0.3584
 0.5337   0.4983   0.85     0.833    0.7324   0.492    0.39     0.09845
 0.8965   0.862    0.4033   0.181    0.2203   0.3738   0.2761   0.9653
 0.3577   0.289    0.3167   0.91     0.2688   0.3972   0.585    0.2178
 0.307    0.4966   0.513    0.5225   0.786    0.1888   0.9287   0.5093
 0.1193   0.3987   0.799    0.9995   0.611    0.9897   0.7515   0.4478
 0.3232   0.2426   0.3323   0.7134   0.77     0.7275   0.02043  0.3132
 0.3555   0.03122  0.8623   0.4705   0.6357   0.3157   0.5063   0.1711
 0.885    0.7554   0.815    0.0213   0.4346   0.049    0.905    0.525
 0.921    0.02411  0.771    0.7227   0.1786   0.278    0.03387  0.7744
 0.05875  0.8955   0.8374   0.715    0.3765   0.02075  0.675    0.9883
 0.63     0.7017   0.299    0.92     0.1644   0.3977   0.487    0.818
 0.636    0.3452   0.6406   0.783    0.3728   0.1619   0.7725   0.4673
 0.297    0.9375   0.083    0.0914   0.6704   0.08923  0.332    0.0973
 0.507    0.201    0.1658   0.2358   0.8706   0.6846   0.6396   0.289
 0.831    0.669    0.4683   0.2568   0.219    0.616    0.978    0.1564
 0.925    0.4265   0.6055   0.7246   0.235    0.5376   0.03668  0.2441
 0.7935   0.383    0.2996   0.3523   0.2544   0.6006   0.8896   0.757
 0.7134   0.3196   0.3657   0.249    0.2429   0.921    0.877    0.728
 0.8853   0.1635   0.546    0.9243   0.676    0.4749   0.3928   0.4187
 0.612    0.3953   0.2372   0.4092   0.1523   0.1599   0.03108  0.1602
 0.2474   0.3572   0.0643   0.9434   0.52     0.8574   0.959    0.7593
 0.2318   0.5444   0.2222   0.3884   0.8066   0.4573   0.664    0.335
 0.02025  0.1519   0.01386  0.989    0.852    0.695    0.01289  0.3433
 0.2148   0.9404   0.6753   0.704    0.11163  0.675    0.5264   0.1514
 0.5273   0.9785   0.2769   0.4846   0.2747   0.558    0.742    0.681
 0.835    0.9546   0.941    0.588    0.785    0.2095   0.07294  0.4343
 0.086    0.5825   0.513    0.6313   0.04236  0.4072   0.558    0.681
 0.4805   0.492    0.625    0.7744   0.002626 0.662    0.9043   0.4766
 0.6597   0.6934   0.3394   0.05453  0.9146   0.2222   0.7925   0.605
 0.812    0.671    0.4329   0.2118   0.363    0.1444   0.0955   0.692
 0.675    0.3      0.6846   0.535    0.9834   0.929    0.3582   0.964
 0.3835   0.1466   0.801    0.954    0.2554   0.01357  0.6636   0.8325
 0.6494   0.817    0.2268   0.00904  0.0487   0.08716  0.6753   0.3833
 0.663    0.396    0.6685   0.983    0.0728   0.694    0.02364  0.137
 0.1727   0.231    0.7896   0.8057   0.478    0.883    0.1785   0.5938
 0.11456  0.6997   0.1945   0.02365  0.7236   0.8623   0.2178   0.1295
 0.3867   0.7188   0.11475  0.6      0.419    0.2673   0.4404   0.0107
 0.4304   0.1364   0.3708   0.1158   0.1714   0.3123   0.3403   0.7163
 0.079    0.6245   0.719    0.558    0.4526   0.09924  0.512    0.2452
 0.519    0.999    0.7207   0.5605   0.7217   0.653    0.1164   0.789
 0.4724   0.2727   0.10315  0.9644   0.7573   0.06464  0.858    0.7847
 0.958    0.618    0.9536   0.46     0.9766   0.4263   0.4363   0.4434
 0.95     0.3032   0.4338   0.809    0.1642   0.0561   0.2668   0.1853
 0.356    0.934    0.968    0.327    0.913    0.434    0.6616   0.00502
 0.05066  0.5327   0.276    0.5176   0.0674   0.6143   0.8345   0.2976
 0.315    0.6646   0.527    0.791    0.0299   0.4558   0.8354   0.3115
 0.3735   0.3582   0.742    0.2637   0.8877   0.7603   0.4568   0.2045
 0.4746   0.392    0.65     0.391    0.972    0.6973   0.2297   0.568
 0.49     0.1895   0.547    0.79     0.747    0.5205   0.313    0.3809
 0.7817   0.32     0.1012   0.339    0.716    0.8955   0.8564   0.126
 0.6597   0.228    0.1194   0.4775   0.173    0.0265   0.7456   0.859
 0.4841   0.595    0.4553   0.1351   0.2246   0.3564   0.1832   0.8535
 0.703    0.2423   0.04187  0.145    0.997    0.1919   0.571    0.8555
 0.1578   0.2688   0.405    0.3909   0.1428   0.863    0.7295   0.3267
 0.1294   0.5986   0.677    0.7065   0.8853   0.923    0.9385   0.935
 0.1747   0.32     0.2292   0.2676   0.1161   0.4666   0.3826   0.2588
 0.1863   0.7993   0.3984   0.2961   0.2952   0.3247   0.923    0.05746 ]
输出数据(dst_gm):
[9.980e-01 5.364e-06 9.629e-01 2.682e-06 9.946e-01 6.676e-06 9.966e-01
 7.510e-06 9.995e-01 5.424e-06 9.888e-01 6.378e-06 9.990e-01 6.735e-06
 9.971e-01 5.484e-06]
  • 完整样例二
#include "kernel_operator.h"

namespace AscendC {
class KernelReduce {
public:
    __aicore__ inline KernelReduce() {}
    __aicore__ inline void Init(__gm__ uint8_t* src, __gm__ uint8_t* dstGm)
    {
        srcGlobal.SetGlobalBuffer((__gm__ half*)src);
        dstGlobal.SetGlobalBuffer((__gm__ half*)dstGm);

        repeat = srcDataSize / mask;
        pipe.InitBuffer(inQueueSrc, 1, srcDataSize * sizeof(half));
        pipe.InitBuffer(outQueueDst, 1, dstDataSize * sizeof(half));
    }
    __aicore__ inline void Process()
    {
        CopyIn();
        Compute();
        CopyOut();
    }

private:
    __aicore__ inline void CopyIn()
    {
        LocalTensor<half> srcLocal = inQueueSrc.AllocTensor<half>();
        DataCopy(srcLocal, srcGlobal, srcDataSize);
        inQueueSrc.EnQue(srcLocal);
    }
    __aicore__ inline void Compute()
    {
        LocalTensor<half> srcLocal = inQueueSrc.DeQue<half>();
        LocalTensor<half> dstLocal = outQueueDst.AllocTensor<half>();

        WholeReduceMin<half>(dstLocal, srcLocal, mask, repeat, 1, 1, 8); // 使用默认order

        outQueueDst.EnQue<half>(dstLocal);
        inQueueSrc.FreeTensor(srcLocal);
    }
    __aicore__ inline void CopyOut()
    {
        LocalTensor<half> dstLocal = outQueueDst.DeQue<half>();
        DataCopy(dstGlobal, dstLocal, dstDataSize);
        outQueueDst.FreeTensor(dstLocal);
    }

private:
    TPipe pipe;
    TQue<QuePosition::VECIN, 1> inQueueSrc;
    TQue<QuePosition::VECOUT, 1> outQueueDst;
    GlobalTensor<half> srcGlobal, dstGlobal;
    int srcDataSize = 1024;
    int dstDataSize = 16;
    int mask = 128;
    int repeat = 0;
};
} // namespace AscendC

extern "C" __global__ __aicore__ void reduce_kernel(__gm__ uint8_t* src, __gm__ uint8_t* dstGm)
{
    AscendC::KernelReduce op;
    op.Init(src, dstGm);
    op.Process();
}

输入数据(src_gm):
[8.94   4.773  8.53   6.047  7.883  3.824  8.04   1.233  9.125  7.484
 8.21   1.197  4.34   2.99   6.55   2.494  2.758  9.664  3.406  1.665
 2.059  3.836  8.83   2.72   5.81   9.055  2.95   5.906  2.29   1.999
 8.27   3.234  2.389  4.73   8.21   6.945  1.834  1.227  4.598  2.285
 3.504  6.48   4.984  6.125  6.21   4.035  8.375  6.89   5.258  9.43
 9.805  5.195  2.143  2.36   3.467  2.746  4.203  1.737  4.734  2.717
 3.8    1.995  4.133  4.742  5.83   7.844  2.182  5.95   6.887  9.13
 3.393  6.938  8.33   4.074  5.812  4.805  5.92   5.832  7.176  8.01
 6.64   1.468  5.61   4.49   2.736  6.766  8.5    4.164  5.1    7.58
 2.771  1.703  2.588  5.53   6.773  4.758  1.837  6.08   5.555  9.55
 6.3    8.086  7.043  7.383  9.73   7.484  6.113  7.93   9.11   2.72
 5.406  8.9    6.688  5.73   3.037  1.871  5.33   6.633  9.43   8.805
 1.092  9.2    4.16   2.543  2.072  5.297  1.922  3.06   5.883  5.996
 6.31   9.69   9.42   6.46   2.363  2.664  1.711  4.227  9.73   6.875
 4.43   3.652  7.91   5.875  2.154  8.77   3.064  7.76   5.254  2.986
 5.453  3.344  3.256  7.566  7.336  7.62   6.61   5.94   6.547  9.3
 4.418  9.21   3.518  7.53   7.766  9.37   4.125  2.275  6.355  9.07
 2.633  2.15   5.363  2.148  8.84   7.918  1.124  2.107  9.695  2.475
 3.168  4.336  3.639  6.76   7.625  5.375  4.35   9.11   2.66   3.082
 3.156  6.574  1.6875 5.285  5.984  3.71   7.324  8.7    1.902  6.883
 3.38   2.812  5.52   4.355  7.883  2.424  2.033  1.163  3.502  9.7
 4.53   4.086  1.8955 2.42   6.695  8.72   7.32   5.477  4.99   4.715
 9.78   3.45   5.73   8.73   8.38   1.751  1.987  8.41   4.984  1.489
 3.73   7.613  8.44   4.027  9.97   3.303  3.438  2.475  6.27   6.742
 3.492  7.152  9.87   3.135  3.658  2.887  6.55   7.6    9.695  1.997
 3.959  9.85   3.79   7.938  7.97   3.17   9.78   5.688  8.15   8.22
 1.746  4.633  4.06   9.71   9.695  4.     3.314  7.56   8.56   3.45
 8.52   5.39   6.332  6.883  1.269  1.232  3.148  3.582  8.33   1.179
 1.37   5.297  4.66   7.285  1.086  2.473  3.51   7.28   4.13   8.37
 2.441  5.73   7.496  5.31   8.76   2.38   7.348  7.453  2.664  2.328
 9.93   1.119  8.766  6.395  5.965  5.99   4.6    2.154  1.278  4.074
 3.883  6.617  6.05   2.447  2.256  8.63   6.348  7.816  1.547  1.743
 8.94   9.414  9.49   9.625  8.21   1.641  1.308  5.79   3.178  6.17
 4.094  4.812  6.434  1.946  5.64   7.957  7.75   1.073  8.33   7.105
 4.39   5.98   7.53   6.05   1.823  2.086  5.5    6.71   8.33   8.29
 3.584  7.684  5.766  2.354  6.78   1.824  9.97   8.51   6.58   6.43
 6.21   6.4    4.367  4.406  2.604  4.33   1.739  8.     1.828  9.14
 6.32   9.2    3.469  8.586  9.01   3.854  9.49   4.133  6.266  5.08
 2.426  7.574  1.077  3.453  3.975  9.58   8.7    8.48   8.82   8.92
 3.809  7.355  7.758  9.336  6.734  2.578  9.23   7.406  9.28   2.688
 9.82   4.816  1.821  4.99   4.26   3.223  7.277  4.25   8.3    9.734
 4.65   6.535  1.145  7.367  3.615  7.36   8.33   7.58   9.336  5.17
 6.52   9.41   9.98   2.766  9.42   6.85   2.258  5.3    6.85   1.848
 5.83   4.863  6.875  2.215  5.13   5.836  8.01   4.56   7.89   5.273
 7.51   6.938  9.42   2.69   2.434  9.586  9.375  4.48   3.656  1.709
 6.43   7.363  2.744  6.316  1.648  8.62   9.61   3.787  2.877  9.09
 3.76   1.255  9.84   2.592  1.932  5.68   1.545  5.27   5.758  2.615
 1.832  4.492  4.258  8.64   1.39   1.534  4.465  4.832  5.62   2.893
 3.928  3.438  3.84   2.105  5.355  4.402  9.54   8.98   5.723  5.91
 4.97   3.984  5.707  8.82   7.71   1.297  3.387  7.04   2.494  3.83
 6.375  7.28   2.805  3.244  4.97   3.736  5.363  9.64   3.41   6.297
 9.83   5.832  3.182  1.314  9.02   5.95   6.215  5.043  7.984  5.75
 6.29   4.297  3.11   9.11   2.44   9.42   6.27   3.5    7.652  7.043
 7.36   3.336  5.938  7.88   8.414  9.445  3.121  8.57   6.848  8.375
 4.395  3.344  7.2    7.188  3.502  1.3955 7.113  8.17   7.625  7.375
 9.43   4.996  8.82   7.47   9.01   9.914  6.05   3.867  8.87   2.713
 1.194  7.246  1.3    6.07   3.338  9.37   8.98   4.402  8.414  9.91
 4.273  5.07   6.832  8.1    5.79   4.207  7.098  6.89   4.875  8.1
 5.562  1.795  1.216  6.06   7.05   8.46   8.6    4.18   9.55   9.17
 4.832  4.348  5.11   1.57   3.262  2.871  7.586  6.89   1.491  5.07
 8.516  5.453  7.027  8.75   2.98   8.14   1.939  3.496  9.13   6.695
 9.88   6.918  8.11   2.334  3.172  2.023  5.71   5.73   8.93   7.59
 7.676  6.156  4.63   9.3    9.85   7.64   3.037  7.844  1.864  8.86
 8.95   3.492  5.094  3.98   8.734  5.7    8.83   4.83   8.77   3.256
 1.446  9.57   7.24   1.619  4.305  2.613  8.52   1.942  4.51   1.763
 7.008  2.906  3.297  2.9    6.     7.266  1.484  9.82   9.49   4.29
 5.184  9.23   5.32   4.977  8.46   5.01   8.83   8.125  6.703  5.76
 2.81   5.477  9.21   5.965  1.945  7.785  5.402  2.926  4.125  8.66
 3.064  7.67   5.617  1.917  5.652  6.71   6.016  1.414  3.623  5.543
 5.496  1.709  5.63   9.8    4.074  8.45   8.69   3.287  7.598  4.82
 9.34   6.863  3.615  9.57   6.914  1.097  5.77   3.168  4.13   8.805
 9.11   6.074  6.94   4.207  8.87   3.771  6.723  6.18   5.035  5.168
 2.54   6.5    1.165  8.27   8.34   6.55   5.48   2.916  5.227  7.355
 6.773  8.93   8.03   7.016  9.055  9.38   5.96   7.605  1.135  2.719
 5.67   8.47   8.586  1.516  5.88   2.809  3.754  5.08   4.523  4.11
 7.37   8.27   7.13   7.375  6.21   8.27   6.258  7.2    9.875  2.72
 8.836  2.295  3.596  6.4    6.664  2.426  2.326  2.234  9.13   1.09
 9.31   7.383  6.848  9.77   3.455  1.8955 6.52   7.934  3.096  2.916
 4.414  7.7    6.53   7.883  5.312  3.621  4.26   2.764  7.105  2.695
 8.88   3.555  8.23   2.025  3.723  1.196  9.31   6.984  5.156  7.996
 7.68   2.73   5.074  5.566  6.027  8.49   2.867  8.15   2.607  4.12
 8.26   2.084  5.19   2.662  2.92   6.574  9.516  4.066  3.162  4.785
 6.754  1.17   3.25   9.29   6.49   1.221  7.5    7.5    7.176  7.355
 4.605  7.17   3.082  4.1    4.17   7.3    2.621  5.188  7.848  9.62
 6.586  4.727  8.49   2.406  5.637  2.627  2.666  1.433  4.594  4.88
 4.914  3.025  8.05   9.22   9.14   7.965  9.93   5.695  1.479  4.594
 3.604  7.51   7.13   7.61   4.164  8.8    3.176  4.48   5.414  4.88
 2.848  7.9    5.734  2.412  6.234  6.13   2.422  7.     6.46   5.28
 2.537  9.26   5.508  4.15   6.965  9.984  2.588  1.44   9.27   9.48
 1.508  4.164  4.6    4.78   2.553  7.42   8.19   2.09   9.17   6.39
 5.117  4.316  2.928  1.542  6.156  5.367  7.465  3.67   2.71   8.56
 1.676  9.74   1.035  4.35   7.5    9.06   5.242  3.38   9.02   9.74
 3.441  2.215  7.453  6.547  8.77   1.679  7.656  1.884  9.86   7.883
 2.838  7.453  2.102  4.016  6.887  7.74   7.04   8.195  5.957  5.348
 6.99   5.723  3.357  7.945  6.863  5.895  8.24   1.139  4.688  7.727
 5.473  8.38   7.953  1.94   7.387  4.152  9.664  5.984  3.938  1.157
 9.37   7.023  9.26   7.47   6.973  2.006  2.646  7.94   8.695  4.49
 7.99   3.072  7.39   9.15   1.879  8.97   8.125  4.613  1.028  2.877
 9.15   2.771  9.11   2.422  2.613  5.12   1.508  5.746  2.5    3.857
 7.28   8.836  3.615  6.316  2.506  7.938  2.576  5.2    1.335  7.88
 3.838  8.8    5.723  9.836  6.35   3.557  5.08   2.344  2.633  5.46
 8.39   1.893  8.164  5.836  1.698  1.498  9.33   3.895  4.137  6.684
 7.793  2.14   9.055  3.16  ]
输出数据(dst_gm):
[1.092e+00 7.153e-06 1.124e+00 2.861e-06 1.073e+00 4.828e-06 1.145e+00
 1.669e-06 1.194e+00 2.861e-06 1.097e+00 3.874e-06 1.090e+00 5.960e-08
 1.028e+00 4.888e-06]
  • 完整样例三
#include "kernel_operator.h"

namespace AscendC {
class KernelReduce {
public:
    __aicore__ inline KernelReduce() {}
    __aicore__ inline void Init(__gm__ uint8_t* src, __gm__ uint8_t* dstGm)
    {
        srcGlobal.SetGlobalBuffer((__gm__ half*)src);
        dstGlobal.SetGlobalBuffer((__gm__ half*)dstGm);

        repeat = srcDataSize / mask;
        pipe.InitBuffer(inQueueSrc, 1, srcDataSize * sizeof(half));
        pipe.InitBuffer(outQueueDst, 1, dstDataSize * sizeof(half));
    }
    __aicore__ inline void Process()
    {
        CopyIn();
        Compute();
        CopyOut();
    }

private:
    __aicore__ inline void CopyIn()
    {
        LocalTensor<half> srcLocal = inQueueSrc.AllocTensor<half>();
        DataCopy(srcLocal, srcGlobal, srcDataSize);
        inQueueSrc.EnQue(srcLocal);
    }
    __aicore__ inline void Compute()
    {
        LocalTensor<half> srcLocal = inQueueSrc.DeQue<half>();
        LocalTensor<half> dstLocal = outQueueDst.AllocTensor<half>();

        WholeReduceSum<half>(dstLocal, srcLocal, mask, repeat, 1, 1, 8);

        outQueueDst.EnQue<half>(dstLocal);
        inQueueSrc.FreeTensor(srcLocal);
    }
    __aicore__ inline void CopyOut()
    {
        LocalTensor<half> dstLocal = outQueueDst.DeQue<half>();
        DataCopy(dstGlobal, dstLocal, dstDataSize);
        outQueueDst.FreeTensor(dstLocal);
    }

private:
    TPipe pipe;
    TQue<QuePosition::VECIN, 1> inQueueSrc;
    TQue<QuePosition::VECOUT, 1> outQueueDst;
    GlobalTensor<half> srcGlobal, dstGlobal;
    int srcDataSize = 2048;
    int dstDataSize = 16;
    int mask = 128;
    int repeat = 0;
};
} // namespace AscendC

extern "C" __global__ __aicore__ void reduce_kernel(__gm__ uint8_t* src, __gm__ uint8_t* dstGm)
{
    AscendC::KernelReduce op;
    op.Init(src, dstGm);
    op.Process();
}

输入数据(src_gm):
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1.]
输出数据(dst_gm):
[128. 128. 128. 128. 128. 128. 128. 128. 128. 128. 128. 128. 128. 128.
 128. 128.]