aclnnBatchMatMul
支持的产品型号
- Atlas 推理系列产品。
- Atlas 训练系列产品。
- Atlas A2训练系列产品/Atlas 800I A2推理产品。
接口原型
每个算子分为两段式接口,必须先调用“aclnnBatchMatMulGetWorkspaceSize”接口获取入参并根据流程计算所需workspace大小,再调用“aclnnBatchMatMul”接口执行计算。
aclnnStatus aclnnBatchMatMulGetWorkspaceSize(const aclTensor *self, const aclTensor *mat2, aclTensor *out, int8_t cubeMathType, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnBatchMatMul(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
算子功能: 完成两个Tensor的矩阵乘。 仅支持三维的Tensor传入。第一维是batch维度,仅支持一维batch做broadcast(例如左矩阵batch为1,右矩阵batch为n),最后两个维度做矩阵乘法。
计算公式:
示例:
self的shape是[A, M, K],mat2的shape是[A, K, N],计算输出out的shape是[A, M, N]。第一维相等,后两维做矩阵乘运算。
aclnnBatchMatMulGetWorkSpaceSize
参数说明:
- self(const aclTensor *, 计算输入): 做矩阵乘运算的第一个输入Tensor,Device侧aclTensor。数据类型支持FLOAT16、FLOAT、BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持),且数据类型应该与mat2一致,支持非连续的Tensor,数据格式支持ND。
- mat2(const aclTensor *, 计算输入): 做矩阵乘运算的第二个输入Tensor,Device侧aclTensor。数据类型支持FLOAT16、FLOAT、BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持),且数据类型应该与self一致,支持非连续的Tensor,数据格式支持ND。
- out(aclTensor *, 计算输出): 输出Tensor,是Device侧aclTensor。数据类型支持FLOAT16、FLOAT、BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持),数据类型应该与self和mat2保持一致。数据格式支持ND,与self保持一致。
- cubeMathType(int8_t *, 计算输入): 用于判断Cube单元使用哪种计算逻辑进行运算,数据类型支持INT8,支持的枚举值如下:
- 0:KEEP_DTYPE,保持输入的数据类型进行计算。当输入是FLOAT,Atlas 训练系列产品和Atlas 推理系列产品暂不支持,取0时会报错。
- 1:ALLOW_FP32_DOWN_PRECISION,允许将输入数据降精度计算。当输入是FLOAT,Atlas 训练系列产品和Atlas 推理系列产品转换为FLOAT16计算,Atlas A2训练系列产品/Atlas 800I A2推理产品转换为HFLOAT32计算。
- 2:USE_FP16,允许转换为数据类型FLOAT16进行计算。当输入数据类型是FLOAT,转换为FLOAT16计算。
- 3:USE_HF32,允许转换为数据类型HFLOAT32计算。当输入是FLOAT,Atlas 训练系列产品和Atlas 推理系列产品暂不支持,取3时会报错,Atlas A2训练系列产品/Atlas 800I A2推理产品转换为HFLOAT32计算。
- workspaceSize(uint64_t *, 出参): 返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor **, 出参): 返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的self、mat2或out是空指针。 161002(ACLNN_ERR_PARAM_INVALID):1. self、mat2或out的数据类型不在支持的范围内。 2. self、mat2或out的数据格式不在支持的范围内。 3. self和mat2的第一维度不相等(非broadcast)。 4. self和mat2的维度不是三维。 5. self的最后一维和mat2的倒数第二维不相等。
aclnnBatchMatMul
参数说明:
- workspace(void *, 入参): 在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参): 在Device侧申请的workspace大小,由第一段接口aclnnBatchMatMulGetWorkSpaceSize获取。
- executor(aclOpExecutor *, 入参): op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参): 指定执行任务的 AscendCL Stream流。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
约束与限制
对于Atlas 训练系列产品和Atlas 推理系列产品,Cube单元不支持FLOAT32计算。当输入为FLOAT32,可通过设置cubeMathType=1(Allow_FP32_DOWN_PRECISION)来允许接口内部cast到FLOAT16进行计算。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_batch_matmul.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请Device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将Host侧数据拷贝到Device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
// check根据自己的需要处理
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfShape = {1, 2, 3};
std::vector<int64_t> mat2Shape = {1, 3, 4};
std::vector<int64_t> outShape = {1, 2, 4};
void* selfDeviceAddr = nullptr;
void* mat2DeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclTensor* mat2 = nullptr;
aclTensor* out = nullptr;
std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5};
std::vector<float> mat2HostData = {1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4};
std::vector<float> outHostData(8, 0);
int8_t cubeMathType = 1;
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建mat2 aclTensor
ret = CreateAclTensor(mat2HostData, mat2Shape, &mat2DeviceAddr, aclDataType::ACL_FLOAT, &mat2);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// aclnnBatchMatMul接口调用示例
// 3. 调用CANN算子库API,需要修改为具体的API名称
// 调用aclnnBatchMatMul第一段接口
ret = aclnnBatchMatMulGetWorkspaceSize(self, mat2, out, cubeMathType, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBatchMatMulGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnBatchMatMul第二段接口
ret = aclnnBatchMatMul(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBatchMatMul failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将Device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(self);
aclDestroyTensor(mat2);
aclDestroyTensor(out);
// 7. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(selfDeviceAddr);
aclrtFree(outDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}