aclnnBatchMatmulQuant
支持的产品型号
- Atlas A2训练系列产品/Atlas 800I A2推理产品。
接口原型
每个算子分为两段式接口,必须先调用“aclnnBatchMatmulQuantGetWorkspaceSize”接口获取入参并根据流程计算所需workspace大小,再调用“aclnnBatchMatmulQuant”接口执行计算。
aclnnStatus aclnnBatchMatmulQuantGetWorkspaceSize(const aclTensor* x1, const aclTensor* x2, const aclTensor* quantParam, const aclTensor* bias, bool transposeX1, bool transposeX2, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnBatchMatmulQuant(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, const aclrtStream stream)
功能描述
算子功能: 实现输入Tensor的dtype是float16, 输出的dtype是int8的矩阵乘计算
计算公式:
aclnnBatchMatmulQuantGetWorkSpaceSize
参数说明:
- x1(const aclTensor *, 计算输入): 公式中的输入x1, 数据类型支持float16。支持非连续的Tensor, 维度支持2维。
- x2(const aclTensor *, 计算输入): 经处理能得到公式中的输入x2, 数据类型支持float16。支持非连续的Tensor, 维度支持2维。
- bias(const aclTensor *, 计算输入): 公式中的输入bias, 数据类型支持float16。支持非连续的Tensor, 维度只支持一维。shape的大小等于输出tensor(out)最后一个维度的大小,输入可以为空。
- quantParam(const aclTensor *, 计算输入): 硬件完成量化计算的量化参数, 可以通过aclnnTransQuantParam接口获取, 数据类型支持uint64, 数据格式支持NC1HWC0。支持非连续的Tensor。维度只支持一维, shape的大小(即元素个数)需要满足以下场景中任意一种:
- shape的大小为1。
- shape的大小等于输出tensor(out)最后一个维度的大小向上对齐到16的倍数。
- transposeX1(bool, 计算输入): 用于描述x1是否转置。
- transposeX2(bool, 计算输入): 用于描述x2是否转置。
- out(aclTensor *, 计算输出): 输出Tensor,是Device侧aclTensor。数据类型支持int8。数据格式支持ND,与x1保持一致。
- workspaceSize(uint64_t *, 出参): 返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor **, 出参): 返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的x1、x2、quantParam或out是空指针。 161002(ACLNN_ERR_PARAM_INVALID):1. x1、x2、quantParam或out的数据类型不在支持的范围内。 2. x1、x2、quantParam或out的数据格式不在支持的范围内。 3. quantParam的维度值不为1, 或者不为输出tensor(out)最后一个维度的大小向上对齐到16的倍数。 4. x1和x2的输入shape不满足矩阵乘的关系。 5. shape中存在0,即空tensor。 6. bias存在时,bias shape与输出tensor(out)最后一个维度的大小不一致。
aclnnBatchMatmulQuant
参数说明:
- workspace(void *, 入参): 在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参): 在Device侧申请的workspace大小,由第一段接口aclnnBatchMatmulQuantGetWorkSpaceSize获取。
- executor(aclOpExecutor *, 入参): op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参): 指定执行任务的 AscendCL Stream流。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
约束与限制
无
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include <cmath>
#include <memory>
#include "acl/acl.h"
#include "aclnnop/aclnn_batchmatmul_quant.h"
#include "aclnnop/aclnn_trans_quant_param.h"
#include "aclnnop/level2/aclnn_cast.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define CHECK_FREE_RET(cond, return_expr) \
do { \
if (!(cond)) { \
Finalize(deviceId, stream);\
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请Device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将Host侧数据拷贝到Device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
void Finalize(int32_t deviceId, aclrtStream &stream) {
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
}
int aclnnBatchMatmulQuantTest(int32_t deviceId, aclrtStream &stream) {
auto ret = Init(deviceId, &stream);
// check根据自己的需要处理
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> fMapShape = {2, 2};
std::vector<int64_t> wtsShape = {2, 2};
std::vector<int64_t> outShape = {2, 2};
int64_t N = 2;
void* fMapDeviceAddr = nullptr;
void* fMapFp16DeviceAddr = nullptr;
void* wtsDeviceAddr = nullptr;
void* quantParamDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
std::vector<float> fMapHostData = {1, 1, 1, 1};
std::vector<float> wtsHostData = {1, 1, 1, 1};
std::vector<int8_t> outHostData = {0, 0, 0, 0};
bool transposeX1 = false;
bool transposeX2 = false;
std::cout<<"host_side data processing..."<<std::endl;
float quantOffset = 0;
float quantScale = 1;
std::vector<float>OffsetHostData = {0.0, 0.0};
float* OffsetDate = OffsetHostData.data();
uint64_t OffsetSize = 2;
std::vector<float>ScaleHostData = {1.0, 1.0};
float* ScaleDate = ScaleHostData.data();
uint64_t ScaleSize = 2;
// Get quantParam
uint64_t quantParamSize = 0;
uint64_t *quantParamData = nullptr;
ret = aclnnTransQuantParam(ScaleDate, ScaleSize, OffsetDate, OffsetSize, &quantParamData, &quantParamSize);
for (int64_t i = 0; i < quantParamSize; i++) {
if (quantParamData == nullptr) {
printf("ERROR: quantParamData[*ld] = nullptr", i);
return ACL_SUCCESS;
} else {
printf("quantParamData[%ld] = %lu\n", i, quantParamData[i]);
}
}
std::vector<uint64_t> quantParamHostData(quantParamData, quantParamData + quantParamSize);
std::vector<int64_t> quantParamShape = {quantParamSize};
std::cout<<"host_side data processing finish"<<std::endl;
// create aclTensor
aclTensor* fMap = nullptr;
aclTensor* wts = nullptr;
aclTensor* quantParam = nullptr;
aclTensor* out = nullptr;
aclTensor* fmapFp16 = nullptr;
aclTensor* wtsFp16 = nullptr;
// fmap aclTensor
ret = CreateAclTensor(fMapHostData, fMapShape, &fMapDeviceAddr, aclDataType::ACL_FLOAT, &fMap);
std::unique_ptr<void, aclError (*)(void *)> fMapDeviceAddrPtr(fMapDeviceAddr, aclrtFree);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> fMapPtr(fMap, aclDestroyTensor);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// fmapFp16 aclTensor
ret = CreateAclTensor(fMapHostData, fMapShape, &fMapFp16DeviceAddr, aclDataType::ACL_FLOAT16, &fmapFp16);
std::unique_ptr<void, aclError (*)(void *)> fMapFp16DeviceAddrPtr(fMapFp16DeviceAddr, aclrtFree);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> fmapFp16Ptr(fmapFp16, aclDestroyTensor);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// wts aclTensor
ret = CreateAclTensor(wtsHostData, wtsShape, &wtsDeviceAddr, aclDataType::ACL_FLOAT, &wts);
std::unique_ptr<void, aclError (*)(void *)> wtsDeviceAddrPtr(wtsDeviceAddr, aclrtFree);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> wtsPtr(wts, aclDestroyTensor);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// wtsFp16 aclTensor
void* wtsFp16DeviceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> wtsFp16DeviceAddrPtr(wtsFp16DeviceAddr, aclrtFree);
ret = CreateAclTensor(wtsHostData, wtsShape, &wtsFp16DeviceAddr, aclDataType::ACL_FLOAT16, &wtsFp16);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> wtsFp16Ptr(wtsFp16, aclDestroyTensor);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// quantPre aclTensor
ret = CreateAclTensor(quantParamHostData, quantParamShape, &quantParamDeviceAddr, aclDataType::ACL_UINT64, &quantParam);
std::unique_ptr<void, aclError (*)(void *)> quantParamDeviceAddrPtr(quantParamDeviceAddr, aclrtFree);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> quantParamPtr(quantParam, aclDestroyTensor);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_INT8, &out);
std::unique_ptr<void, aclError (*)(void *)> outDeviceAddrPtr(outDeviceAddr, aclrtFree);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> outPtr(out, aclDestroyTensor);
CHECK_RET(ret == ACL_SUCCESS, return ret);
std::cout<<"CreateAclTensor finish"<<std::endl;
// 3. CANN API
uint64_t workspaceSize = 0;
aclOpExecutor* executor = nullptr;
// aclnnCastfp16
// fmap
ret = aclnnCastGetWorkspaceSize(fMap, aclDataType::ACL_FLOAT16, fmapFp16, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCastGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
void* fmapCastWorkspaceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> fmapCastWorkspacePtr(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&fmapCastWorkspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
fmapCastWorkspacePtr.reset(fmapCastWorkspaceAddr);
}
ret = aclnnCast(fmapCastWorkspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCast failed. ERROR: %d\n", ret); return ret);
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// wts
workspaceSize = 0;
executor = nullptr;
ret = aclnnCastGetWorkspaceSize(wts, aclDataType::ACL_FLOAT16, wtsFp16, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCastGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
void *wtsCastWorkspaceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> wtsCastWorkspacePtr(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&wtsCastWorkspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
wtsCastWorkspacePtr.reset(wtsCastWorkspaceAddr);
}
ret = aclnnCast(wtsCastWorkspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCast failed. ERROR: %d\n", ret); return ret);
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
std::cout<<"cast fp16 input finish"<<std::endl;
workspaceSize = 0;
executor = nullptr;
ret = aclnnBatchMatmulQuantGetWorkspaceSize(fmapFp16, wtsFp16, quantParam, nullptr, transposeX1, transposeX2, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBatchMatmulQuantGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
void *mmWorkspaceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> mmWorkspacePtr(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&mmWorkspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
mmWorkspacePtr.reset(mmWorkspaceAddr);
}
ret = aclnnBatchMatmulQuant(mmWorkspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBatchMatmulQuant failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将Device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<int8_t> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %d\n", i, resultData[i]);
}
return ACL_SUCCESS;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = aclnnBatchMatmulQuantTest(deviceId, stream);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBatchMatmulQuantTest failed. ERROR: %d\n", ret); return ret);
Finalize(deviceId, stream);
return 0;
}