aclnnCalculateConvolutionWeightSize
支持的产品型号
- Atlas 推理系列产品。
接口原型
aclnnStatus aclnnCalculateConvolutionWeightSize(const aclIntArray* tensorShape, bool transposed, int64_t groups, aclDataType dataType, uint64_t* weightTensorSize)
功能描述
- 算子功能: 在Convolution算子NCHW格式输入下,计算需要申请的weight的大小,仅支持Float16数据类型,该接口仅仅用于判断对weight Tensor进行预处理需要使用多少size才可使Convolution算子执行性能最优。 例如: 输入【2, 4, 8, 8】, 该函数出于性能角度考虑,会将shape变化为【64, 1, 16, 16】, 因此函数会将引用输入修改为16384。
aclnnCalculateConvolutionWeightSize
参数说明:
- tensorShape(const aclIntArray *, 计算输入):用于表达该次Convolution载入权重矩阵的Shape,仅支持NCHW格式的shape。
- transposed(bool *, 计算输入):Host侧的布尔值,表明是否为转置卷积,目前仅支持设为false。
- groups(int64_t *, 计算输入):Host侧的整型,表示从输入通道到输出通道的块链接个数,取值范围为[1,65535]。
- dataType(aclDataType *, 计算输入):Host侧的aclDataType类型,表示转换后weight的数据类型,仅支持ACL_FLOAT16。
- weightTensorSize(uint64_t *, 计算输出):根据Convolution内部处理逻辑,计算该输入下weight需要多少个元素的数据量。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
161001(ACLNN_ERR_PARAM_NULLPTR):1. 输入是空指针。 161002(ACLNN_ERR_PARAM_INVALID):1. 输入shape校验失败或其他输入不符合预期。
约束与限制
- 仅支持正向Conv2D场景。
- 不支持转置卷积。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_convolution.h"
#include "aclnnop/aclnn_trans_convolution_weight.h"
using namespace std;
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_NCHW,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
template <typename T>
int CreateWeightAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor, uint64_t &TransWeightSize)
{
auto size = GetShapeSize(shape) * sizeof(T);
// 调用transweight host接口 计算实际elements数量
const aclIntArray* weightSize = aclCreateIntArray(shape.data(), shape.size());
auto ret = aclnnCalculateConvolutionWeightSize(weightSize, false, 1, aclDataType::ACL_FLOAT16, &TransWeightSize);
// 调用aclrtMalloc申请device侧内存
ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret);
return ret);
// 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret);
return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_NCHW,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> inputShape = {1, 4, 16, 16};
std::vector<int64_t> weightShape = {2, 4, 8, 8};
std::vector<int64_t> biasShape = {2};
std::vector<int64_t> outShape = {1, 2, 9, 9};
void* inputDeviceAddr = nullptr;
void* weightDeviceAddr = nullptr;
void* biasDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* input = nullptr;
aclTensor* weight = nullptr;
aclTensor* bias = nullptr;
aclTensor* out = nullptr;
// aclTensor* transWeight = nullptr;
std::vector<float> inputHostData(1024, 1);
std::vector<float> weightHostData(512, 1);
std::vector<float> biasHostData(2, 1);
std::vector<float> outHostData(162, 0);
uint64_t transWeightSize = 0;
// 创建self aclTensor
ret = CreateAclTensor(inputHostData, inputShape, &inputDeviceAddr, aclDataType::ACL_FLOAT16, &input);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建other aclTensor
ret = CreateWeightAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT16,
&weight, transWeightSize);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建bias aclTensor
ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_FLOAT16, &bias);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建Transweight acltensor
void* transWeightDeviceAddr = nullptr;
uint64_t size = transWeightSize * sizeof(float) / 2;
// size = 8192 * sizeof(float_t);
ret = aclrtMalloc(&transWeightDeviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret);return ret);
std::vector<float> transData;
transData.resize(transWeightSize * 2);
// 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上transData.data()
ret = aclrtMemcpy(transWeightDeviceAddr, size, transData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret);
return ret);
// 计算连续tensor的strides
vector<int64_t> shape = weightShape;
std::vector<int64_t> s(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
s[i] = shape[i + 1] * s[i + 1];
}
aclTensor* transWeight = aclCreateTensor(shape.data(), shape.size(), aclDataType::ACL_FLOAT16, s.data(), 0, aclFormat::ACL_FORMAT_NCHW,
shape.data(), shape.size(), transWeightDeviceAddr);
// 3. 调用CANN算子库API,需要修改为具体的Api名称
int8_t cubeMathType = 0;
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
bool transposed = 0;
uint64_t groups = 1;
// 调用TransWeight
ret = aclnnTransConvolutionWeightGetWorkspaceSize(weight, transposed, groups, transWeight,
&workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransConvolutionWeightGetWorkspaceSize failed. ERROR: %d\n", ret);
return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnTransConvolutionWeight第二段接口
ret = aclnnTransConvolutionWeight(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransConvolutionWeight failed. ERROR: %d\n", ret); return ret);
std::vector<int64_t> convStrides = {1, 1, 1, 1};
std::vector<int64_t> convPads = {0, 0, 0, 0};
std::vector<int64_t> convOutPads = {1, 1, 1, 1};
std::vector<int64_t> convDilations = {1, 1, 1, 1};
aclIntArray *strides = aclCreateIntArray(convStrides.data(), 2);
aclIntArray *pads = aclCreateIntArray(convPads.data(), 2);
aclIntArray *outPads = aclCreateIntArray(convOutPads.data(), 2);
aclIntArray *dilations = aclCreateIntArray(convDilations.data(), 2);
// 3. 调用CANN算子库API,需要修改为具体的API
workspaceSize = 0;
// 调用aclnnConvolution第一段接口
ret = aclnnConvolutionGetWorkspaceSize(input, transWeight, bias, strides, pads, dilations, false, outPads, groups,
out, cubeMathType, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvolutionGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnConvolution第二段接口
ret = aclnnConvolution(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvolution failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(input);
aclDestroyTensor(weight);
aclDestroyTensor(transWeight);
aclDestroyTensor(bias);
aclDestroyTensor(out);
aclDestroyIntArray(strides);
aclDestroyIntArray(pads);
aclDestroyIntArray(outPads);
aclDestroyIntArray(dilations);
// 7. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(inputDeviceAddr);
aclrtFree(weightDeviceAddr);
aclrtFree(transWeightDeviceAddr);
aclrtFree(outDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}