aclnnCalculateMatmulWeightSize
支持的产品型号
- Atlas 推理系列产品。
- Atlas A2训练系列产品/Atlas 800I A2推理产品。
接口原型
aclnnStatus aclnnCalculateMatmulWeightSize(const aclIntArray *tensorShape, uint64_t *weightTensorSize)
功能描述
算子功能: 在Matmul算子ND格式输入下,计算需要申请的weight的大小,仅支持Float16, BFloat16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持)数据类型,该接口仅仅用于判断对weight Tensor进行预处理需要使用多少size才可使Matmul算子执行性能最优。 例如: 输入【510, 510】 该函数出于性能角度考虑,会将shape变化为【512,512】 因此函数会将引用输入修改为262144
计算公式
aclnnCalculateMatmulWeightSize
参数说明:
- tensorShape(const aclIntArray *, 计算输入):用于表达该次Matmul载入权重矩阵的Shape,输入shape只支持2维(n,k)。
- weightTensorSize(uint64_t *, 计算输出):根据MatMul内部处理逻辑,计算该输入下weight需要多少个元素的数据量。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
161001(ACLNN_ERR_PARAM_NULLPTR):1. 输入是空指针。 161002(ACLNN_ERR_PARAM_INVALID):1. 计算过程失败。
约束与限制
- 不支持Atlas 训练系列产品调用此接口。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_mm.h"
#include "aclnnop/aclnn_trans_matmul_weight.h"
#include "aclnnop/aclnn_cast.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
template <typename T>
int CreateAclTensorWeight(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = static_cast<uint64_t>(GetShapeSize(shape));
const aclIntArray* mat2Size = aclCreateIntArray(shape.data(), shape.size());
auto ret = aclnnCalculateMatmulWeightSize(mat2Size, &size);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCalculateMatmulWeightSize failed. ERROR: %d\n", ret); return ret);
size *= sizeof(T);
// 调用aclrtMalloc申请device侧内存
ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
std::vector<int64_t> storageShape;
storageShape.push_back(GetShapeSize(shape));
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
storageShape.data(), storageShape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfShape = {16, 32};
std::vector<int64_t> mat2Shape = {32, 16};
std::vector<int64_t> outShape = {16, 16};
void* selfDeviceAddr = nullptr;
void* mat2DeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclTensor* mat2 = nullptr;
aclTensor* out = nullptr;
std::vector<int16_t> selfHostData(512, 1);
std::vector<int16_t> mat2HostData(512, 1);
std::vector<int16_t> outHostData(256, 0);
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT16, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建other aclTensor
ret = CreateAclTensorWeight(mat2HostData, mat2Shape, &mat2DeviceAddr, aclDataType::ACL_FLOAT16, &mat2);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的Api名称
int8_t cubeMathType = 1;
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用TransWeight
ret = aclnnTransMatmulWeightGetWorkspaceSize(mat2, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeightGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnTransMatmulWeight第二段接口
ret = aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeight failed. ERROR: %d\n", ret); return ret);
// 调用aclnnMm第一段接口
uint64_t workspaceSizeMm = 0;
ret = aclnnMmGetWorkspaceSize(self, mat2, out, cubeMathType, &workspaceSizeMm, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMmGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddrMm = nullptr;
if (workspaceSizeMm > 0) {
ret = aclrtMalloc(&workspaceAddrMm, workspaceSizeMm, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnMm第二段接口
ret = aclnnMm(workspaceAddrMm, workspaceSizeMm, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMm failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(self);
aclDestroyTensor(mat2);
aclDestroyTensor(out);
// 7. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(selfDeviceAddr);
aclrtFree(mat2DeviceAddr);
aclrtFree(outDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
if (workspaceSizeMm > 0) {
aclrtFree(workspaceAddrMm);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}