aclnnInplaceCopy
支持的产品型号
- Atlas 推理系列产品。
- Atlas 训练系列产品。
- Atlas A2训练系列产品/Atlas 800I A2推理产品。
- Atlas 200/500 A2推理产品。
接口原型
算子分为两段式接口,必须先调用“aclnnInplaceCopyGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnInplaceCopy”接口执行计算。
aclnnStatus aclnnInplaceCopyGetWorkspaceSize(aclTensor *selfRef, const aclTensor *src, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnInplaceCopy(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
功能描述
算子功能:将src中的元素复制到selfRef张量中并返回selfRef。
计算公式:
示例:
输入selfRef为: tensor([[1, 2], [3, 4]]) 输入src为: tensor([[5, 6], [7, 8]]) 输出selfRef为: tensor([[5, 6], [7, 8]])
aclnnInplaceCopyGetWorkspaceSize
参数说明:
selfRef(aclTensor*, 计算输入|计算输出):公式中的
selfRef
,注意目前只有selfRef为连续时,才支持复数间的拷贝。shape需要与src满足broadcast关系。支持非连续的Tensor,数据格式支持ND。- Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持INT8, INT16, INT32, INT64, UINT8, FLOAT16, FLOAT32, BOOL, DOUBLE, COMPLEX64, COMPLEX128, UINT16, UINT32, UINT64, BFLOAT16
- Atlas 训练系列产品、Atlas 推理系列产品、Atlas 200/500 A2推理产品:数据类型支持INT8, INT16, INT32, INT64, UINT8, FLOAT16, FLOAT32, BOOL, DOUBLE, COMPLEX64, COMPLEX128, UINT16, UINT32, UINT64
src(aclTensor*, 计算输入):公式中的
src
,注意目前只有selfRef为连续时,才支持复数间的拷贝。shape需要与selfRef满足broadcast关系。支持非连续的Tensor,数据格式支持ND。- Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持INT8, INT16, INT32, INT64, UINT8, FLOAT16, FLOAT32, BOOL, DOUBLE, COMPLEX64, COMPLEX128, UINT16, UINT32, UINT64, BFLOAT16
- Atlas 训练系列产品、Atlas 推理系列产品、Atlas 200/500 A2推理产品:数据类型支持INT8, INT16, INT32, INT64, UINT8, FLOAT16, FLOAT32, BOOL, DOUBLE, COMPLEX64, COMPLEX128, UINT16, UINT32, UINT64
workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 返回161001 (ACLNN_ERR_PARAM_NULLPTR):1. 传入的selfRef或src是空指针时。 返回 161002 (ACLNN_ERR_PARAM_INVALID):1. selfRef的数据类型不在支持的范围之内。 2. selfRef的shape超过8维。 3. src的维度不能广播至selfRef。 4. src的数据类型不能转换到selfRef。
aclnnInplaceCopy
参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnInplaceCopyGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的 AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
无
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_copy.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shape_size = 1;
for (auto i : shape) {
shape_size *= i;
}
return shape_size;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化, 参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
// check根据自己的需要处理
CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfRefShape = {4, 2};
std::vector<int64_t> srcShape = {4, 2};
void* selfRefDeviceAddr = nullptr;
void* srcDeviceAddr = nullptr;
aclTensor* selfRef = nullptr;
aclTensor* src = nullptr;
std::vector<float> selfRefHostData = {0, 1, 2, 3, 4, 5, 6, 7};
std::vector<float> srcHostData = {1, 1, 1, 2, 2, 2, 3, 3};
// 创建selfRef aclTensor
ret = CreateAclTensor(selfRefHostData, selfRefShape, &selfRefDeviceAddr, aclDataType::ACL_FLOAT, &selfRef);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建other aclTensor
ret = CreateAclTensor(srcHostData, srcShape, &srcDeviceAddr, aclDataType::ACL_FLOAT, &src);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnInplaceCopy第一段接口
ret = aclnnInplaceCopyGetWorkspaceSize(selfRef, src, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceCopyGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
}
// 调用aclnnInplaceCopy第二段接口
ret = aclnnInplaceCopy(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceCopy failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(selfRefShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), selfRefDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(selfRef);
aclDestroyTensor(src);
// 7.释放device资源,需要根据具体API的接口定义修改
aclrtFree(selfRefDeviceAddr);
aclrtFree(srcDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}