下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

aclnnOneHot

支持的产品型号

  • Atlas 推理系列产品。
  • Atlas 训练系列产品。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口原型

每个算子分为两段式接口,必须先调用“aclnnOneHotGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnOneHot”接口执行计算。

  • aclnnStatus aclnnOneHotGetWorkspaceSize(const aclTensor* self, int numClasses, const aclTensor* onValue, const aclTensor* offValue, int64_t axis, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)

  • aclnnStatus aclnnOneHot(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)

功能描述

  • 算子功能:对长度为n的输入self, 经过one_hot的计算后得到一个元素数量为n*k的输出out,其中k的值为numClasses。 输出的元素满足下列公式:

    out[i][j]={onValue,self[i]=joffValue,self[i]jout[i][j]=\left\{ \begin{aligned} onValue,\quad self[i] = j \\ offValue, \quad self[i] \neq j \end{aligned} \right.
  • 示例:

    示例1:
    self = tensor([0, 1, 2, 0, 1])
    numClasses = 5
    onValue = tensor([1])
    offValue = tensor([0])
    axis=-1
    out的shape为(5,5)
    out = tensor([[1, 0, 0, 0, 0],
                  [0, 1, 0, 0, 0],
                  [0, 0, 1, 0, 0],
                  [1, 0, 0, 0, 0],
                  [0, 1, 0, 0, 0]])
    
    示例2:
    self = tensor([0, 1, 2, 0, 1])
    numClasses = 1
    onValue = tensor([1])
    offValue = tensor([0])
    axis=-1
    out的shape为(5,1)
    out = tensor([[1],
                  [0],
                  [0],
                  [1],
                  [0]])
    
    示例3:
    self = tensor([0, 1, 2, 0, 1])
    numClasses = 0
    onValue = tensor([1])
    offValue = tensor([0])
    axis=-1
    out的shape为(5,0)
    out = tensor([])
    
    示例4:
    self = tensor([[1,2,3]]) # shape (1,3)
    numClasses = 4
    onValue = tensor([1])
    offValue = tensor([0])
    axis=1
    out的shape为(1,4,3)
    out = tensor([[[0. 0. 0.]
                   [1. 0. 0.]
                   [0. 1. 0.]
                   [0. 0. 1.]]]) # shape (1, 4, 3)

aclnnOneHotGetWorkspaceSize

  • 参数说明:

    • self(aclTensor*,计算输入):公式中的self,Device侧的aclTensor,数据类型支持INT32、INT64,支持非连续的Tensor数据格式支持ND。
    • numClasses(int,计算输入):表示类别数,数据类型必须输入INT64。当self为空Tensor时,numClasses的值需大于0;当self不为空Tensor时。numClasses需大于等于0。若numClasses的值为0,则返回空Tensor。如果self存在元素大于numClasses,这些元素会被编码成全0。
    • onValue(aclTensor*,计算输入):公式中的onValue,Device侧的aclTensor,数据类型支持FLOAT16、FLOAT、INT32、INT64,且数据类型需与out一致,支持非连续的Tensor数据格式支持ND。
    • offValue(aclTensor*,计算输入):公式中的offValue,Device侧的aclTensor,数据类型支持FLOAT16、FLOAT、INT32、INT64,且数据类型需与out一致,支持非连续的Tensor数据格式支持ND。
    • axis(int64_t,计算输入):表示编码向量的插入维度,最小值为-1,最大值为self的维度数。若值为-1,编码向量会往self的最后一维插入。
    • out(aclTensor*,计算输出):公式中的输出out,Device侧的aclTensor,数据类型支持FLOAT16、FLOAT、INT32、INT64,shape与在self的shape在axis轴插入numClasses后的shape一致,支持非连续的Tensor数据格式支持ND。
    • workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现如下场景时报错:
    返回161001(ACLNN_ERR_PARAM_NULLPTR): 1. 传入的self、onValue、offValue或out为空指针。
    返回161002(ACLNN_ERR_PARAM_INVALID): 1. self、onValue、offValue或out不在支持的数据类型范围之内。
                                          2. onValue、offValue的数据类型与out的数据类型不一致。
                                          3. self为空Tensor,且numClasses小于等于0。
                                          4. self不为空Tensor,且numClasses小于0。
                                          5. axis的值小于-1。
                                          6. axis的值大于self的维度数量。
                                          7. out的维度不比self的维度多1维。
                                          8. out的shape与在self的shape在axis轴插入numClasses后的shape不一致。

aclnnOneHot

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnOneHotGetWorkspaceSize获取。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的 AscendCL Stream流。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

无。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_one_hot.h"

#define CHECK_RET(cond, return_expr) \
    do {                             \
        if (!(cond)) {               \
            return_expr;             \
        }                            \
    } while (0)

#define LOG_PRINT(message, ...)         \
    do {                                \
        printf(message, ##__VA_ARGS__); \
    } while (0)

int64_t GetShapeSize(const std::vector<int64_t> &shape)
{
    int64_t shape_size = 1;
    for (auto i : shape) {
        shape_size *= i;
    }
    return shape_size;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
    aclDataType dataType, aclTensor **tensor)
{
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }

    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(),
        shape.size(),
        dataType,
        strides.data(),
        0,
        aclFormat::ACL_FORMAT_ND,
        shape.data(),
        shape.size(),
        *deviceAddr);
    return 0;
}

int main()
{
    // 1. (固定写法)device/stream初始化, 参考acl对外接口列表
    // 根据自己的实际device填写deviceId
    int32_t deviceId = 0;
    aclrtStream stream;
    auto ret = Init(deviceId, &stream);
    // check根据自己的需要处理
    CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    // 2. 构造输入与输出,需要根据API的接口自定义构造
    std::vector<int64_t> selfShape = {4, 2};
    int numClasses = 4;
    std::vector<int64_t> outShape = {4, 2, 4};
    std::vector<int64_t> onValueShape = {1};
    std::vector<int64_t> offValueShape = {1};
    void *selfDeviceAddr = nullptr;
    void *outDeviceAddr = nullptr;
    void *onValueDeviceAddr = nullptr;
    void *offValueDeviceAddr = nullptr;
    aclTensor *self = nullptr;
    aclTensor *out = nullptr;
    aclTensor *onValue = nullptr;
    aclTensor *offValue = nullptr;
    std::vector<int32_t> selfHostData = {0, 1, 2, 3, 3, 2, 1, 0};
    std::vector<int32_t> outHostData = {
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    std::vector<int32_t> onValueHostData = {1};
    std::vector<int32_t> offValueHostData = {0};
    // 创建self aclTensor
    ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_INT32, &self);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建out aclTensor
    ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_INT32, &out);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建onValue aclTensor
    ret = CreateAclTensor(onValueHostData, onValueShape, &onValueDeviceAddr, aclDataType::ACL_INT32, &onValue);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建offValue aclTensor
    ret = CreateAclTensor(offValueHostData, offValueShape, &offValueDeviceAddr, aclDataType::ACL_INT32, &offValue);
    CHECK_RET(ret == ACL_SUCCESS, return ret);

    // 3. 调用CANN算子库API,需要修改为具体的API
    uint64_t workspaceSize = 0;
    int64_t axis = -1;
    aclOpExecutor *executor;
    // 调用aclnnoneHot第一段接口
    ret = aclnnOneHotGetWorkspaceSize(self, numClasses, onValue, offValue, axis, out, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnOneHotGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    void *workspaceAddr = nullptr;
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
    }
    // 调用aclnnOnehot第二段接口
    ret = aclnnOneHot(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnOneHot failed. ERROR: %d\n", ret); return ret);
    // 4. (固定写法)同步等待任务执行结束
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
    auto size = GetShapeSize(outShape);
    std::vector<int32_t> resultData(size, 0);
    ret = aclrtMemcpy(resultData.data(),
        resultData.size() * sizeof(resultData[0]),
        outDeviceAddr,
        size * sizeof(int32_t),
        ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    for (int64_t i = 0; i < size; i++) {
        LOG_PRINT("result[%ld] is: %d\n", i, resultData[i]);
    }

    // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
    aclDestroyTensor(self);
    aclDestroyTensor(onValue);
    aclDestroyTensor(offValue);
    aclDestroyTensor(out);

    // 7. 释放device资源,需要根据具体API的接口定义修改
    aclrtFree(selfDeviceAddr);
    aclrtFree(onValueDeviceAddr);
    aclrtFree(offValueDeviceAddr);
    aclrtFree(outDeviceAddr);
    if (workspaceSize > 0) {
        aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(stream);
    aclrtResetDevice(deviceId);
    aclFinalize();
    return 0;
}
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词