aclnnResize
支持的产品型号
- Atlas 推理系列产品。
- Atlas 训练系列产品。
- Atlas A2训练系列产品/Atlas 800I A2推理产品。
接口原型
每个算子分为两段式接口,必须先调用“aclnnResizeGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnResize”接口执行计算。
aclnnStatus aclnnResizeGetWorkspaceSize(const aclTensor* self, const aclFloatArray* scales, const char* mode, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor);
aclnnStatus aclnnResize(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream);
功能描述
算子功能:根据scales调整输入张量的大小
计算公式:
aclnnResizeGetWorkspaceSize
参数说明:
- self(aclTensor*, 计算输入):输入的张量,Device侧的aclTensor,数据类型支持FLOAT16、FLOAT,支持非连续的Tensor,数据格式支持NCHW,bilinear模式输入数据范围是[0,255]。
- scales(aclFloatArray*, 计算输入):指定self张量调整的倍数,数据类型为FLOAT,长度和self维度相同。当前仅支持调整self后两维,scales前两个元素需保持为1。
- mode(char*, 计算输入):插值模式,Host侧的字符类型,只支持nearest或bilinear。
- out(aclTensor*, 计算输出):输出张量,Device侧的aclTensor,数据类型支持FLOAT16、FLOAT,shape符合output_dimension = floor(input_dimension * scales)
- workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参):返回op执行器, 包含了算子计算流程。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 返回161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的self、scales、mode、out中有空指针 返回161002(ACLNN_ERR_PARAM_INVALID):1. 数据类型不在支持的范围之内; 2. shape不满足要求 a) self和out的shape必须4维 b) self和out的第1第2维必须相同 c) out的第3维必须等于self的第3维乘以scales第3个值 d) out的第4维必须等于self的第4维乘以scales第4个值
aclnnResize
参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnResizeGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的 AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
无。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_resize.h"
#include <unistd.h>
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_NCHW,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化, 参考acl对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
// check根据自己的需要处理
CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfShape = {1,1,2,2};
std::vector<int64_t> outShape = {1,1,4,4};
void* selfDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclTensor* out = nullptr;
std::vector<float> selfHostData = {1.0,2.0,3.0,4.0};
std::vector<float> scalesData = {1.0, 1.0, 2.0, 2.0};
std::vector<float> outHostData(16);
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
aclFloatArray *scales = nullptr;
scales = aclCreateFloatArray(scalesData.data(),scalesData.size());
CHECK_RET(scales != nullptr, return 0);
// 3. 调用CANN算子库API,需要修改为具体的API
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
const char* mode = "nearest";
// 调用aclnnResize第一段接口
ret = aclnnResizeGetWorkspaceSize(self, scales, mode, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnResizeGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
printf("workspaceSize: %ld\n",workspaceSize);
}
// 调用aclnnResize第二段接口
ret = aclnnResize(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnResizefailed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(self);
aclDestroyTensor(out);
aclDestroyFloatArray(scales);
// 7. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(selfDeviceAddr);
aclrtFree(outDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
sleep(10);
return 0;
}