下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

aclnnStd

支持的产品型号

  • Atlas 推理系列产品。
  • Atlas 训练系列产品。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口原型

每个算子分为两段式接口,必须先调用“aclnnStdGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnStd”接口执行计算。

  • aclnnStatus aclnnStdGetWorkspaceSize(const aclTensor* self, const aclIntArray* dim, const int64_t correction, bool keepdim, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnStd(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, const aclrtStream stream)

功能描述

  • 算子功能:计算指定维度(dim)的标准差,这个dim可以是单个维度,维度列表或者None。
  • 计算公式: 假设 dim 为 ii,则对该维度进行计算。NN为该维度的 shape。取 selfiself_{i},求出该维度上的平均值 xiˉ\bar{x_{i}}out=1NδNj=0N1(selfijxiˉ)2out = \sqrt{\frac{1}{N - \delta N}\sum_{j=0}^{N-1}(self_{ij}-\bar{x_{i}})^2}keepdim = true时,reduce 后保留该维度,且输出 shape 中该维度值为 1;当 keepdim = false时,不保留。

aclnnStdGetWorkspaceSize

  • 参数说明

    • self(aclTensor*,计算输入): 计算公式中的self,Device侧的aclTensor,支持非连续的Tensor
      • Atlas 训练系列产品、Atlas 推理系列产品:数据类型支持FLOAT、FLOAT16。数据格式支持ND。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。数据格式支持ND。
    • dim(aclIntArray,计算输入): 参与计算的维度,取值范围为[-self.dim(), self.dim()-1],Host侧的aclIntArray,计算公式中的dim值,支持的数据类型为INT32、INT64。
    • correction(int64_t,计算输入): 修正值,Host侧的整型,计算公式中的δN\delta N值。
    • keepdim(bool,计算输入): 是否在输出张量中保留输入张量的维度,Host侧的布尔型,计算公式中的keepdim值。
    • out(aclTensor*,计算输出): Device侧的aclTensor。支持非连续的Tensor
      • Atlas 训练系列产品、Atlas 推理系列产品:数据类型支持FLOAT、FLOAT16。数据格式支持ND。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。数据格式支持ND。
    • workspaceSize(uint64_t*, 出参): 返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参): 返回op执行器,包含算子计算流程。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    返回161001 ACLNN_ERR_PARAM_NULLPTR:1. 传入的 self、out 是空指针时。
    返回161002 ACLNN_ERR_PARAM_INVALID:1. self、dim、out数据类型不在支持的范围之内。
                                        2. dim 数组中的维度超出 self 的维度范围。
                                        3. dim 数组中元素重复。
                                        4. out的shape出现如下情况会出错:
                                           1. keepdim为true时,out.shape != self.shape(指定维度dim设置为1的形状);
                                           2. keepdim为false时,out.shape != self.shape(去除指定维度dim后的形状)

aclnnStd

  • 参数说明
    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnStdGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的 AscendCL Stream流。
  • 返回值: aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_std.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> outShape = {2};
  void* selfDeviceAddr = nullptr;
  void* dimDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclIntArray* dim = nullptr;
  aclTensor* out = nullptr;
  std::vector<float> selfHostData = {2, 3, 5, 8, 4, 12, 6, 7};
  std::vector<float> outHostData = {2, 3, 5, 8};
  std::vector<int64_t> dimData = {0};
  bool keepdim = false;
  int64_t correction = 1;
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建dim aclIntArray
  dim = aclCreateIntArray(dimData.data(), 1);
  CHECK_RET(dim != nullptr, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的API名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnStd第一段接口
  ret = aclnnStdGetWorkspaceSize(self, dim, correction, keepdim, out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnStdGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnStd第二段接口
  ret = aclnnStd(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnStd failed. ERROR: %d\n", ret); return ret);
  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyIntArray(dim);
  aclDestroyTensor(out);

  // 7.释放device资源,需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(dimDeviceAddr);
  aclrtFree(outDeviceAddr);
  if (workspaceSize > 0) {
      aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词