下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

IndexILFlat

IndexILFlat为纯Device侧检索方案,利用昇腾AI处理器和AI Core等资源进行各个接口的使能。程序需要在Host侧编译生成二进制文件,然后将二进制文件和相关运行时依赖部署到Device侧。部署请参见下方使用指导,接口使用约束请参考IndexILFlat

参考用例代码

#include <IndexILFlat.h>
#include <iostream>
#include <numeric>
#include <vector>
#include "acl/acl.h"
#include "arm_fp16.h"
int TestComputeDistance(ascend::IndexILFlat &index, int queryN, int baseSize, float16_t *queryData)
{
    int baseSizeAlign = (baseSize + 15) / 16 * 16;
    std::vector<float> distances(queryN * baseSizeAlign);
    auto ret = index.ComputeDistance(queryN, queryData, distances.data());
    return ret;
}
int TestSearchByThreshold(ascend::IndexILFlat &index, int queryN, float16_t *queryData)
{
    int topK = 10;
    float threshold = 0.6;
    std::vector<int> num(queryN);
    std::vector<float> distances(queryN * topK);
    std::vector<ascend::idx_t> idxs(queryN * topK);
    auto ret = index.SearchByThreshold(queryN, queryData, threshold, topK, num.data(), idxs.data(), distances.data());
    return ret;
}
int main(int argc, char **argv)
{
    // 0.1 Remember to set device first, please refer to CANN Application
    // Software Development Guide (C&C++, Inference)
    aclError aclSet = aclrtSetDevice(0);
    if (aclSet != 0) {
        printf("Set device failed ,error code:%d\n", aclSet);
        return 0;
    }
    // 0.2 construct index
    const int dim = 512;
    const int baseSize = 100000;
    const int queryN = 64;
    const int capacity = 100000;
    const int resourceSize = -1;
    auto metricType = ascend::AscendMetricType::ASCEND_METRIC_INNER_PRODUCT;
    std::vector<float16_t> base(baseSize * dim);
    std::vector<ascend::idx_t> ids(baseSize);
    for (size_t j = 0; j < base.size(); j++) {
        base[j] = drand48();
    }
    std::iota(ids.begin(), ids.end(), 0);
    // 1. build Index and initialize
    ascend::IndexILFlat indexFlat;
    auto ret = indexFlat.Init(dim, capacity, metricType, resourceSize);
    if (ret != 0) {
        printf("Index initialize failed ,error code:%d\n", ret);
        aclrtResetDevice(0);
        return 0;
    }
    // 2. add base vectors
    ret = indexFlat.AddFeatures(baseSize, base.data(), ids.data());
    if (ret != 0) {
        printf("Add features failed ,error code:%d\n", ret);
        indexFlat.Finalize();
        aclrtResetDevice(0);
        return 0;
    }
    // 3.1 Test ComputeDistance
    std::vector<float16_t> queries(queryN * dim);
    for (size_t i = 0; i < queries.size(); i++) {
        queries[i] = drand48();
    }
    ret = TestComputeDistance(indexFlat, queryN, baseSize, queries.data());
    if (ret != 0) {
        printf("Compute distance failed ,error code:%d\n", ret);
        indexFlat.Finalize();
        aclrtResetDevice(0);
        return 0;
    }
    // 3.2 Test SearchByThreshold
    ret = TestSearchByThreshold(indexFlat, queryN, queries.data());
    if (ret != 0) {
        printf("Search by threshold failed ,error code:%d\n", ret);
        indexFlat.Finalize();
        aclrtResetDevice(0);
        return 0;
    }
    // 4. release resource
    indexFlat.Finalize();
    aclrtResetDevice(0);
    printf("------------Demo correct--------------\n");
    return 0;
}

使用指导

  1. IndexILFlat发布件,可在mxIndex软件包安装完成后在安装目录中找到。
    • 头文件:mxIndex/device/include/IndexILFlat.h
    • 动态库:mxIndex/device/lib/libascendfaiss_minios.so
  2. 代码需要使用CANN内置的HCC编译器(默认CANN安装路径下,编译器路径为“/usr/local/Ascend/ascend-toolkit/latest/toolkit/toolchain/hcc/bin/aarch64-target-linux-gnu-g++”)进行编译,编译完成后部署到Device侧(具体请参见《CANN 软件安装指南 (开放态, Atlas 推理系列产品》的“定制文件系统”章节进行部署)。

    如果需通过SSH服务直接拷贝依赖到Device侧或通过SSH登录到Device上直接运行样例,则需要参考《CANN 软件安装指南 (开放态, Atlas 推理系列产品》的“使用DSMI接口打开SSH服务”章节并解除SSH服务的50M内存占用限制,否则无法发送全部依赖文件,用例无法执行。

  3. 算子om文件生成。
    执行以下命令,会在Host侧“mxIndex/modelpath”目录下会生成相关算子文件,算子也需要部署到Device侧。
    cd mxIndex
    ./ops/custom*
    cd tools
    python3.7 flat_generate_model.py -d 512 --cores 8 -pool 16 -t 310P
    mv op_models/*.om ../modelpath
  4. 编译用例代码。
    在mxIndex工程内新建test路径(mxIndex/test),在test路径下创建“IndexILDemo.cpp”源文件,复制参考用例代码,编译命令参考如下。
    /usr/local/Ascend/ascend-toolkit/latest/toolkit/toolchain/hcc/bin/aarch64-target-linux-gnu-g++ -fPIC -fPIE -fstack-protector-all -D_FORTIFY_SOURCE=2 -O2 \ 
    -o IndexILDemo IndexILDemo.cpp \ 
    -fopenmp -O3 -frename-registers -fpeel-loops -Wl,-z,relro -Wl,-z,now -Wl,-z,noexecstack -pie -s \ 
    -I/usr/local/AscendMiniOs/acllib/include/ \ 
    -I../include \ 
    -I../device/include \ 
    -L../device/lib \ 
    -L/usr/local/AscendMiniOs/acllib/lib64/stub \ 
    -L/usr/local/Ascend/driver/lib64/common \ 
    -lascendcl -lascend_hal -lc_sec -lascendfaiss_minios
  5. 部署依赖。
    • 在可执行二进制文件的同级路径下需要配置路径“modelpath”,放置步骤3生成的算子文件。
    • CANN的相关库依赖,需要将“/usr/local/AscendMiniOs/aarch64-linux/lib64”部署到Device侧,并配置到“LD_LIBRARY_PATH”
    • 将动态库(mxIndex/device/lib/libascendfaiss_minios.so)部署到Device侧,且并配置到环境变量“LD_LIBRARY_PATH”
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词