下载
中文
注册

aclnnAdaptiveMaxPool2d

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnAdaptiveMaxPool2dGetWorkspaceSize(const aclTensor* self, const aclIntArray* outputSize, aclTensor* outputOut, aclTensor* indicesOut, uint64_t* workspaceSize, aclOpExecutor** executor)
  • 第二段接口:aclnnStatus aclnnAdaptiveMaxPool2d(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, const aclrtStream stream)

功能描述

算子功能:对输入张量实现2D自适应最大池化操作。

aclnnAdaptiveMaxPool2dGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnAdaptiveMaxPool2dGetWorkspaceSize(const aclTensor* self, const aclIntArray* outputSize, aclTensor* outputOut, aclTensor* indicesOut, uint64_t* workspaceSize, aclOpExecutor** executor)

  • 参数说明:
    • self:Device侧的aclTensor,输入张量,shape仅支持3D或4D。数据类型支持FLOAT16、FLOAT32和DOUBLE,支持非连续的Tensor,数据格式支持CHW和NCHW。
    • outputSize:Host侧的aclIntArray,size大小为2。表示输出结果在H和W维度上的空间大小。
    • outputOut:Device侧的aclTensor,数据类型支持FLOAT16、FLOAT32和DOUBLE,且数据类型与self需满足数据类型推导规则,shape与indicesOut一致。支持非连续的Tensor,数据格式支持CHW和NCHW。
    • indicesOut:Device侧的aclTensor,表示outputOut元素在输入self中的索引位置。数据类型支持INT64,且shape与outputOut一致,支持非连续的Tenosr,数据格式支持CHW和NCHW。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、outputSize、outputOut或indicesOut是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • self的数据类型不在支持的范围内。
      • self和outputOut不满足数据类型推导规则。
      • indicesOut的数据类型不为INT64。
      • self的shape不是3维或者4维。
      • self在非第一维度上的size小于1。
      • outputOut和indicesOut的shape不一致。
      • outputSize的size大小不等于2。
      • outputSize中元素值≤0。

aclnnAdaptiveMaxPool2d

  • 接口定义:

    aclnnStatus aclnnAdaptiveMaxPool2d(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, const aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnAdaptiveMaxPool2dGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_adaptive_max_pool2d.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }
  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_NCHW,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {1, 1, 4, 4};
  std::vector<int64_t> outShape = {1, 1, 2, 2};
  void* selfDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  void* indDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* out = nullptr;
  aclTensor* indices = nullptr;
  std::vector<float> selfHostData = {0, 1, 2, 3, 4.1, 5, 6, 7,
                                     8, 9, 10, 11, 12, 13, 14, 15};
  std::vector<float> outHostData = {0, 0, 0, 0.0};
  std::vector<int64_t> indicesHostData = {0, 0, 0, 0};
  float alphaValue = 1.2f;
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(indicesHostData, outShape, &indDeviceAddr, aclDataType::ACL_INT64, &indices);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  std::vector<int64_t> arraySize = {2, 2};
  const aclIntArray *outputSize = aclCreateIntArray(arraySize.data(), arraySize.size());
  CHECK_RET(outputSize != nullptr, return ACL_ERROR_INTERNAL_ERROR);

  // 3.调用CANN算子库API,需要修改为具体的算子接口
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnAdaptiveMaxPool2d第一段接口
  ret = aclnnAdaptiveMaxPool2dGetWorkspaceSize(self, outputSize, out, indices, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAdaptiveMaxPool2dGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnAdaptiveMaxPool2d第二段接口
  ret = aclnnAdaptiveMaxPool2d(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAdaptiveMaxPool2dfailed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> outData(size, 0);
  std::vector<int64_t> indicesData(size, 0);
  ret = aclrtMemcpy(outData.data(), outData.size() * sizeof(outData[0]), outDeviceAddr, size * sizeof(float),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  ret = aclrtMemcpy(indicesData.data(), indicesData.size() * sizeof(indicesData[0]), indDeviceAddr, size * sizeof(int64_t),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("out[%ld] is: %f\n", i, outData[i]);
  }
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("indices[%ld] is: %ld\n", i, indicesData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(out);
  aclDestroyTensor(indices);
  aclDestroyIntArray(outputSize);
  return 0;
}