aclnnArange
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnArangeGetWorkspaceSize(const aclScalar *start, const aclScalar *end, const aclScalar *step, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnArange(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
aclnnArangeGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnArangeGetWorkspaceSize(const aclScalar *start, const aclScalar *end, const aclScalar *step, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- start:Host侧的aclScalar,获取值的范围的起始位置。数据类型支持FLOAT、FLOAT16、DOUBLE、UINT8、INT8、INT16、INT32、INT64、BOOL、BFLOAT16(仅Atlas A2训练系列产品支持),数据格式支持ND。需要满足在step大于0时输入的start小于end,或者step小于0时输入的start大于end。
- end:Host侧的aclScalar,获取值的范围的结束位置。数据类型支持FLOAT、FLOAT16、DOUBLE、UINT8、INT8、INT16、INT32、INT64、BOOL、BFLOAT16(仅Atlas A2训练系列产品支持),数据格式支持ND。需要满足在step大于0时输入的start小于end,或者step小于0时输入的start大于end。
- step:Host侧的aclScalar,获取值的步长。数据类型支持FLOAT、FLOAT16、DOUBLE、UINT8、INT8、INT16、INT32、INT64、BOOL、BFLOAT16(仅Atlas A2训练系列产品支持),数据格式支持ND。需要满足step不等于0。
- out:Device侧的aclTensor,输出的tensor。数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、BFLOAT16(仅Atlas A2训练系列产品支持),数据格式支持ND。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的start、end、step或者out是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- 参数start、end、step、out的数据类型不在支持的范围内。
- 参数start、end、step不满足range的运算逻辑,即当step>0时输入的start大于end,或者step<0时输入的start小于end,或者step等于0。
aclnnArange
- 接口定义:
aclnnStatus aclnnArange(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnArangeGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | #include <iostream> #include <vector> #include <math.h> #include "acl/acl.h" #include "aclnnop/aclnn_arange.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shape_size = 1; for (auto i : shape) { shape_size *= i; } return shape_size; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); // check根据自己的需要处理 CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 void *outDeviceAddr = nullptr; aclScalar *start = nullptr; aclScalar *end = nullptr; aclScalar *step = nullptr; aclTensor *out = nullptr; float startValue = 1.0f; float endValue = 5.0f; float stepValue = 1.0f; double size_arange = ceil(static_cast<double>(endValue - startValue) / stepValue); int64_t size_value = static_cast<int64_t>(size_arange); std::vector<int64_t> outShape = {size_value}; std::vector<float> outHostData(size_value, 0); // 创建start aclScalar start = aclCreateScalar(&startValue, aclDataType::ACL_FLOAT); CHECK_RET(start != nullptr, return ret); // 创建end aclScalar end = aclCreateScalar(&endValue, aclDataType::ACL_FLOAT); CHECK_RET(end != nullptr, return ret); // 创建step aclScalar step = aclCreateScalar(&stepValue, aclDataType::ACL_FLOAT); CHECK_RET(step != nullptr, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API uint64_t workspaceSize = 0; aclOpExecutor *executor; // 调用aclnnArange第一段接口 ret = aclnnArangeGetWorkspaceSize(start, end, step, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnArangeGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void *workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;); } // 调用aclnnArange第二段接口 ret = aclnnArange(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnArange failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outShape); std::vector<float> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyScalar(start); aclDestroyScalar(end); aclDestroyScalar(step); aclDestroyTensor(out); return 0; } |
父主题: NN类算子接口