下载
中文
注册

aclnnBinaryCrossEntropyBackward

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnBinaryCrossEntropyBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *self, const aclTensor *target, const aclTensor *weightOptional, int64_t reduction, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
  • 第二段接口:aclnnStatus aclnnBinaryCrossEntropyBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

功能描述

  • 算子功能:求二元交叉熵函数aclnnBinaryCrossEntropy反向传播的梯度值。
  • 计算公式:

    已知二元交叉熵的计算公式如下:

    其中x表示网络前一层的输出,即正向的预测值;target表示样本的标签值,求二元交叉熵对x的偏导:

    再计算输出向量:

aclnnBinaryCrossEntropyBackwardGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnBinaryCrossEntropyBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *self, const aclTensor *target, const aclTensor *weightOptional, int64_t reduction, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • gradOutput:网络反向传播前一步的梯度值,Device侧的aclTensor。数据类型支持FLOAT16、FLOAT,且数据类型需要与其它参数一起转换到promotion类型,shape可以broadcast到self的shape,支持非连续的Tensor,数据格式支持ND。
    • self:网络正向前一层的计算结果,Device侧的aclTensor。数据类型支持FLOAT16、FLOAT,且数据类型需要与其它参数一起转换到promotion类型,支持非连续的Tensor,数据格式支持ND。
    • target:样本的标签值,取值范围0或1,Device侧的aclTensor。数据类型支持FLOAT16、FLOAT,且数据类型需要与其它参数一起转换到promotion类型,shape可以broadcast到self的shape,支持非连续的Tensor,数据格式支持ND。
    • weightOptional:结果的权重,可选参数,Device侧的aclTensor。数据类型支持FLOAT16、FLOAT,且数据类型需要与其它参数一起转换到promotion类型,shape可以broadcast到self的shape,支持非连续的Tensor,数据格式支持ND。当weightOptional为空时,需要以self的shape调用Level0的ones接口创建一个全1的Tensor。
    • reduction:表示对二元交叉熵反向求梯度计算结果做的reduce操作,仅支持0、1、2三个值,0表示不做任何操作(none);1表示对结果取平均值(mean);2表示对结果求和(sum)。
    • out:存储梯度计算结果,Device侧的aclTensor,数据类型支持FLOAT16、FLOAT,shape与self相同,数据格式支持ND,且数据格式需要与self一致。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的gradOutput、self、target、out是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • gradOutput、self、target、out的数据类型不在支持的范围内。
      • gradOutput、self、target、weightOptional的数据类型不同。
      • gradOutput、target和weightOptional的shape不能broadcast到self的shape。
      • reduction取值不是0、1、2三者之一。
      • gradOutput、self、target、weightOptional的shape维度大于8。

aclnnBinaryCrossEntropyBackward

  • 接口定义:

    aclnnStatus aclnnBinaryCrossEntropyBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnBinaryCrossEntropyBackwardGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_binary_cross_entropy_backward.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> gradOutputShape = {4, 2};
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> targetShape = {4, 2};
  std::vector<int64_t> weightShape = {4, 2};
  std::vector<int64_t> outShape = {4, 2};
  void* gradOutputDeviceAddr = nullptr;
  void* selfDeviceAddr = nullptr;
  void* targetDeviceAddr = nullptr;
  void* weightDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* gradOutput = nullptr;
  aclTensor* self = nullptr;
  aclTensor* target = nullptr;
  aclTensor* weight = nullptr;
  aclTensor* out = nullptr;
  std::vector<float> gradOutputHostData = {0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2};
  std::vector<float> selfHostData = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8};
  std::vector<float> targetHostData = {1, 1, 1, 0, 0, 0, 1, 1};
  std::vector<float> weightHostData = {2, 2, 2, 2, 2, 2, 2, 2};
  std::vector<float> outHostData = {0, 0, 0, 0, 0, 0, 0, 0};
  // 创建gradOutput aclTensor
  ret = CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr,
  aclDataType::ACL_FLOAT, &gradOutput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建target aclTensor
  ret = CreateAclTensor(targetHostData, targetShape, &targetDeviceAddr, aclDataType::ACL_FLOAT, &target);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建weight aclTensor
  ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3.调用CANN算子库API,需要修改为具体的算子接口
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnBinaryCrossEntropyBackward第一段接口
  ret = aclnnBinaryCrossEntropyBackwardGetWorkspaceSize(gradOutput, self, target, weight, 0, out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBinaryCrossEntropyBackwardGetWorkspaceSize failed.   ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnBinaryCrossEntropyBackward第二段接口
  ret = aclnnBinaryCrossEntropyBackward(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBinaryCrossEntropyBackward failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor,需要根据具体API的接口定义修改
  aclDestroyTensor(gradOutput);
  aclDestroyTensor(self);
  aclDestroyTensor(target);
  aclDestroyTensor(weight);
  aclDestroyTensor(out);
  return 0;
}