下载
中文
注册

aclnnClampMin

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnClampMinGetWorkspaceSize(const aclTensor *self, const aclScalar* minValue, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
  • 第二段接口:aclnnStatus aclnnClampMin(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

功能描述

  • 算子功能:将输入的所有元素限制在[minValue, inf]范围内,minValue为标量。
  • 计算公式:

aclnnClampMinGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnClampMinGetWorkspaceSize(const aclTensor *self, const aclScalar* minValue, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • self:Device侧的aclTensor,输入张量x。数据类型支持FLOAT16、FLOAT、FLOAT64、INT8、UINT8、INT16、INT32、INT64、BFLOAT16(仅Atlas A2训练系列产品支持)。支持非连续的Tensor,数据格式支持ND。
    • minValue:Host侧的aclScalar,取值下界,数据类型需要可转换成self的数据类型。
    • out:Device侧的aclTensor,输出张量y。数据类型支持FLOAT16、FLOAT、FLOAT64、INT8、UINT8、INT16、INT32、INT64、BFLOAT16(仅Atlas A2训练系列产品支持),且数据类型和self保持一致,shape和self保持一致,支持非连续的Tensor,数据格式支持ND。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、out其中一个为空指针,minValue为空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • self、out的数据类型和数据格式不在支持的范围内。
      • self的数据类型与输出out的类型不一致。
      • self的shape与输出out的不一致。

aclnnClampMin

  • 接口定义:

    aclnnStatus aclnnClampMin(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnClampMinGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_clamp.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
    int64_t shape_size = 1;
    for (auto i : shape) {
        shape_size *= i;
    }
    return shape_size;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

    // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }

    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                              shape.data(), shape.size(), *deviceAddr);
    return 0;
}

int main() {
    // 1. 固定写法,device/context/stream初始化, 参考AscendCL对外接口列表
    // 根据自己的实际device填写deviceId
    int32_t deviceId = 0;
    aclrtContext context;
    aclrtStream stream;
    auto ret = Init(deviceId, &context, &stream);
    // check根据自己的需要处理
    CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

    // 2. 构造输入与输出,需要根据API的接口定义构造
    std::vector<int64_t> shape = {4, 2};
    void* selfDeviceAddr = nullptr;
    void* outDeviceAddr = nullptr;
    aclTensor* self = nullptr;
    aclScalar* min = nullptr;
    aclTensor* out = nullptr;
    float min_v = 2;
    std::vector<float> selfHostData = {0, 1, 0, 3, 0, 5, 0, 7};
    std::vector<float> outHostData = {0, 0, 0, 0, 0, 0, 0, 0};
    // 创建self aclTensor
    ret = CreateAclTensor(selfHostData, shape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建min
    min = aclCreateScalar(&min_v, aclDataType::ACL_FLOAT);
    CHECK_RET(min != nullptr, return ret);
    // 创建out aclTensor
    ret = CreateAclTensor(outHostData, shape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
    CHECK_RET(ret == ACL_SUCCESS, return ret);

    // 3.调用CANN算子库API,需要修改为具体的算子接口
    uint64_t workspaceSize = 0;
    aclOpExecutor* executor;
    // 调用aclnnClampMin第一段接口
    ret = aclnnClampMinGetWorkspaceSize(self, min, out, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnClampMinGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    void* workspaceAddr = nullptr;
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
    }
    // 调用aclnnClampMin第二段接口
    ret = aclnnClampMin(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnClampMin failed. ERROR: %d\n", ret); return ret);

    // 4. 固定写法,同步等待任务执行结束
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
    auto size = GetShapeSize(shape);
    std::vector<float> resultData(size, 0);
    ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(float),
                      ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);

    for (int64_t i = 0; i < size; i++) {
        LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
    }

    // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
    aclDestroyTensor(self);
	aclDestroyScalar(min);
    aclDestroyTensor(out);
    return 0;
}