aclnnLayerNormBackward
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnLayerNormBackwardGetWorkspaceSize(const aclTensor *gradOut, const aclTensor *input, const aclIntArray *normalizedShape, const aclTensor *mean, const aclTensor *rstd, const aclTensor *weightOptional, const aclTensor *biasOptional, const aclBoolArray *outputMask, aclTensor *gradInputOut, aclTensor *gradWeightOut, aclTensor *gradBiasOut, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnLayerNormBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
算子功能:归一化函数(aclnnLayerNorm/aclnnLayerNormWithImplMode)的反向计算。
aclnnLayerNormBackwardGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnLayerNormBackwardGetWorkspaceSize(const aclTensor *gradOut, const aclTensor *input, const aclIntArray *normalizedShape, const aclTensor *mean, const aclTensor *rstd, const aclTensor *weightOptional, const aclTensor *biasOptional, const aclBoolArray *outputMask, aclTensor *gradInputOut, aclTensor *gradWeightOut, aclTensor *gradBiasOut, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- gradOut:Device侧的aclTensor,正向计算的第一个输出,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与input的shape相等,shape长度大于等于normalizedShape的长度,且与normalizedShape右对齐时对应维度shape相等。支持非连续的Tensor,数据格式支持ND。
- input:Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与gradOut的shape相等,shape长度大于等于normalizedShape的长度,且与normalizedShape右对齐时对应维度shape相等。支持非连续的Tensor,数据格式支持ND。
- normalizedShape:Host侧的aclIntArray,表示需要进行norm计算的shape,数据类型支持INT64。shape长度≤input的shape长度,与input的shape右对齐时的维度shape相等。
- mean:Device侧的aclTensor,正向计算的第二个输出,表示input的均值,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与rstd的shape相等。支持非连续的Tensor,数据格式支持ND。
- rstd:Device侧的aclTensor,正向计算的第三个输出,表示input的标准差的倒数,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与mean的shape相等。支持非连续的Tensor,数据格式支持ND。
- weightOptional:Device侧的aclTensor,输入权重tensor,可选参数。weightOptional非空时,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与normalizedShape相等。支持非连续的Tensor,数据格式支持ND。weightOptional为空时,需要构造一个shape与normalizedShape相等、数据全为1的张量。
- biasOptional:Device侧的aclTensor,输入偏置tensor,可选参数。biasOptional非空时,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与normalizedShape相等。支持非连续的Tensor,数据格式支持ND。biasOptional为空时,需要构造一个shape与normalizedShape相等、数据全为0的张量。
- outputMask:Host侧的aclBoolArray,数据类型支持BOOL,表示对应位置的输出是否为可选。
- gradInputOut:Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2训练系列产品支持)。shape与input的shape相等。支持非连续的Tensor,数据格式支持ND。
- gradWeightOut:Device侧的aclTensor,数据类型支持FLOAT。shape与gradBiasOut的shape相等。支持非连续的Tensor,数据格式支持ND。
- gradBiasOut:Device侧的aclTensor,数据类型支持FLOAT。shape与gradWeightOut的shape相等。支持非连续的Tensor,数据格式支持ND。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):
- 传入的gradOut、input、normalizedShape、mean、rstd、outputMask为空指针。
- outputMask[0]为True且gradInputOut为空指针。
- outputMask[1]为True且gradWeightOut为空指针。
- outputMask[2]为True且gradBiasOut为空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- gradOut、input、mean、rstd、weightOptional非空时或biasOptional非空时的数据类型不在支持的范围。
- gradOut的shape与input的shape不相等。
- normalizedShape维度小于1维。
- mean的shape乘积与input从第0根轴到第(len(input)-len(normalizedShape))轴的乘积不相等。
- rstd的shape乘积与input从第0根轴到第(len(input)-len(normalizedShape))轴的乘积不相等。
- weightOptional非空且shape与normalizedShape不相等。
- biasOptional非空且shape与normalizedShape不相等。
- input的维度小于normalizedShape的维度。
- input的shape与normalizedShape右对齐时对应维度shape不相等。
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):
aclnnLayerNormBackward
- 接口定义:
aclnnStatus aclnnLayerNormBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnLayerNormBackwardGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_layer_norm_backward.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetIntShapeSize(const std::vector<int64_t>& shape) { int64_t shape_size = 1; for (auto i : shape) { shape_size *= i; } return shape_size; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetIntShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } template <typename T> int CreateAclIntArray(const std::vector<T>& hostData, void** deviceAddr, aclIntArray** intArray) { auto size = GetIntShapeSize(hostData) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 调用aclCreateTensor接口创建aclTensor *intArray = aclCreateIntArray(hostData.data(), hostData.size()); return 0; } int main() { // 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); // check根据自己的需要处理 CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> xShape = {2, 2}; std::vector<int64_t> meanShape = {2, 1}; std::vector<int64_t> normShape = {2}; void* dyDeviceAddr = nullptr; void* xDeviceAddr = nullptr; void* normShapeAddr = nullptr; void* meanDeviceAddr = nullptr; void* rstdDeviceAddr = nullptr; void* weightDeviceAddr = nullptr; void* biasDeviceAddr = nullptr; void* maskAddr = nullptr; void* outDeviceAddr = nullptr; void* dwDeviceAddr = nullptr; void* dbDeviceAddr = nullptr; aclTensor* dy = nullptr; aclTensor* x = nullptr; aclIntArray* norm = nullptr; aclTensor* mean = nullptr; aclTensor* rstd = nullptr; aclTensor* weight = nullptr; aclTensor* bias = nullptr; aclBoolArray* mask = nullptr; aclTensor* out = nullptr; aclTensor* dw = nullptr; aclTensor* db = nullptr; std::vector<float> dyHostData = {2,3,4,5}; std::vector<float> xHostData = {2,3,4,5}; std::vector<int64_t> normData = {2}; std::vector<float> meanHostData = {2, 3}; std::vector<float> rstdHostData = {4, 5}; std::vector<float> weightHostData = {1, 1}; std::vector<float> biasHostData = {0, 0}; std::vector<bool> maskData = {true, true, true}; std::vector<float> outHostData = {0, 0, 0, 0}; std::vector<float> dwHostData = {0, 0}; std::vector<float> dbHostData = {0, 0}; // 创建dy aclTensor ret = CreateAclTensor(dyHostData, xShape, &dyDeviceAddr, aclDataType::ACL_FLOAT, &dy); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建x aclTensor ret = CreateAclTensor(xHostData, xShape, &xDeviceAddr, aclDataType::ACL_FLOAT, &x); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建normalizedShape aclIntArray ret = CreateAclIntArray(normData, &normShapeAddr, &norm); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建mean aclTensor ret = CreateAclTensor(meanHostData, meanShape, &meanDeviceAddr, aclDataType::ACL_FLOAT, &mean); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建rstd aclTensor ret = CreateAclTensor(rstdHostData, meanShape, &rstdDeviceAddr, aclDataType::ACL_FLOAT, &rstd); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建weight aclTensor ret = CreateAclTensor(weightHostData, normShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建bias aclTensor ret = CreateAclTensor(biasHostData, normShape, &biasDeviceAddr, aclDataType::ACL_FLOAT, &bias); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建outputmask aclBoolArray bool mask_data[3]={true, true, true}; mask = aclCreateBoolArray(&(mask_data[0]), 3); // ret = CreateAclBoolArray(maskData, &maskAddr, &mask); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, xShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建dw aclTensor ret = CreateAclTensor(dwHostData, normShape, &dwDeviceAddr, aclDataType::ACL_FLOAT, &dw); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建db aclTensor ret = CreateAclTensor(dbHostData, normShape, &dbDeviceAddr, aclDataType::ACL_FLOAT, &db); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3.调用CANN算子库API,需要修改为具体的算子接口 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnLayerNormBackward第一段接口 ret = aclnnLayerNormBackwardGetWorkspaceSize(dy, x, norm, mean, rstd, weight, bias, mask, out, dw, db, &workspaceSize,&executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLayerNormBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;); } // 调用aclnnLayerNormBackward第二段接口 ret = aclnnLayerNormBackward(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLayerNormBackward failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改 auto size = GetIntShapeSize(xShape); std::vector<float> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]); } auto size1 = GetIntShapeSize(normShape); std::vector<float> resultData1(size1, 0); ret = aclrtMemcpy(resultData1.data(), resultData1.size() * sizeof(resultData1[0]), dwDeviceAddr, size1 * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size1; i++) { LOG_PRINT("result[%ld] is: %f\n", i, resultData1[i]); } auto size2 = GetIntShapeSize(normShape); std::vector<float> resultData2(size2, 0); ret = aclrtMemcpy(resultData2.data(), resultData2.size() * sizeof(resultData2[0]), dbDeviceAddr, size2 * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size2; i++) { LOG_PRINT("result[%ld] is: %f\n", i, resultData2[i]); } // 6. 释放aclTensor和aclIntArray,需要根据具体API的接口定义修改 aclDestroyTensor(dy); aclDestroyTensor(x); aclDestroyIntArray(norm); aclDestroyTensor(mean); aclDestroyTensor(rstd); aclDestroyTensor(weight); aclDestroyTensor(bias); aclDestroyBoolArray(mask); aclDestroyTensor(out); aclDestroyTensor(dw); aclDestroyTensor(db); return 0; }