下载
中文
注册

aclnnPreluBackward

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnPreluBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *self, const aclTensor *weight, aclTensor *gradIntput, aclTensor *gradWeight, uint64_t *workspaceSize, aclOpExecutor **executor)
  • 第二段接口:aclnnStatus aclnnPreluBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:激活函数PReLU(aclnnPrelu)的反向计算。
  • 计算公式:

    gradInput的计算公式如下:

    gradWeight的计算公式如下:

aclnnPreluBackwardGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnPreluBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *self, const aclTensor *weight, aclTensor *gradIntput, aclTensor *gradWeight, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • gradOutput:Device侧的aclTensor,输入张量,反向传播的梯度值,数据类型支持FLOAT、FLOAT16,支持非连续的Tensor,数据格式支持ND。
    • self:Device侧的aclTensor,输入张量,prelu正向的输入,数据类型支持FLOAT、FLOAT16,支持非连续的Tensor,数据格式支持ND。
    • weight:Device侧的aclTensor,输入张量,prelu的权重,数据类型支持FLOAT、FLOAT16,支持非连续的Tensor,数据格式支持ND,且元素个数必须等于self的通道数或者1。
    • gradIntput:Device侧的aclTensor,输出张量,是self的反向梯度,与self的维度和数据类型相同。
    • gradWeight:Device侧的aclTensor,输出张量,是weight的反向梯度,数据类型支持FLOAT16、FLOAT32。支持非连续的Tensor,数据格式支持ND,需要与weight的数据类型相同,weight的元素个数为1时,shape需要与weight相同;weight元素个数不为1时,需要为1维Tensor,且元素个数与weight的元素个数相同。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的gradOutput、self、weight、gradInput、gradWeight是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • gradOutput、self、weight、gradInput、gradWeight的数据类型不在支持的范围之内。
      • gradOutput、self、weight、gradInput、gradWeight数据类型不同。
      • gradOutput、self、weight、gradInput、gradWeight维度超过8。
      • weight的元素个数不等于self的通道数或者1。
      • weight的元素个数为1时,gradWeight的shape与weight不相同。

aclnnPreluBackward

  • 接口定义:

    aclnnStatus aclnnPreluBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnPreluBackwardGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_prelu_backward.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto  ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> weightShape = {2};
  std::vector<int64_t> gradOutputShape = {4, 2};
  std::vector<int64_t> gradInputShape = {4, 2};
  std::vector<int64_t> gradWeightShape = {2};

  void* selfDeviceAddr = nullptr;
  void* gradOutputDeviceAddr = nullptr;
  void* weightDeviceAddr = nullptr;
  void* gradInputDeviceAddr = nullptr;
  void* gradWeightDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* weight = nullptr;
  aclTensor* gradOutput = nullptr;
  aclTensor* gradInput = nullptr;
  aclTensor* gradWeight = nullptr;

  std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7};
  std::vector<float> weightHostData = {0.5, 0.5};
  std::vector<float> gradOutputHostData = {1, 1, 1, 1, 1, 1, 1, 1};
  std::vector<float> gradInputHostData = {0, 0, 0, 0, 0, 0, 0, 0};
  std::vector<float> gradWeightHostData = {0, 0};

  // 创建weight aclTensor
  ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建gradOutput aclTensor
  ret = CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr, aclDataType::ACL_FLOAT,
  &gradOutput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建gradInput aclTensor
  ret = CreateAclTensor(gradInputHostData, gradInputShape, &gradInputDeviceAddr, aclDataType::ACL_FLOAT, &gradInput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建gradWeight aclTensor
  ret = CreateAclTensor(gradWeightHostData, gradWeightShape, &gradWeightDeviceAddr, aclDataType::ACL_FLOAT, &gradWeight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的算子接口
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnPreluBackward第一段接口
  ret = aclnnPreluBackwardGetWorkspaceSize(gradOutput, self, weight, gradInput, gradWeight, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnPreluBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnPreluBackward第二段接口
  ret = aclnnPreluBackward(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnPreluBackward failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto gradInputSize = GetShapeSize(gradInputShape);
  std::vector<float> gradInputResultData(gradInputSize, 0);
  ret = aclrtMemcpy(gradInputResultData.data(), gradInputResultData.size() * sizeof(gradInputResultData[0]), gradInputDeviceAddr, gradInputSize * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < gradInputSize; i++) {
    LOG_PRINT("gradInput[%ld] is: %f\n", i, gradInputResultData[i]);
  }

  auto gradWeightSize = GetShapeSize(gradWeightShape);
  std::vector<float> gradWeightResultData(gradWeightSize, 0);
  ret = aclrtMemcpy(gradWeightResultData.data(), gradWeightResultData.size() * sizeof(gradWeightResultData[0]), gradWeightDeviceAddr, gradWeightSize * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < gradWeightSize; i++) {
    LOG_PRINT("gradWeight[%ld] is: %f\n", i, gradWeightResultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(gradOutput);
  aclDestroyTensor(self);
  aclDestroyTensor(weight);
  aclDestroyTensor(gradInput);
  aclDestroyTensor(gradWeight);

  // 7. 释放device资源, 需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(gradOutputDeviceAddr);
  aclrtFree(weightDeviceAddr);
  aclrtFree(gradInputDeviceAddr);
  aclrtFree(gradWeightDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtDestroyContext(context);
  aclrtResetDevice(deviceId);
  aclFinalize();

  return 0;
}