aclnnPreluBackward
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnPreluBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *self, const aclTensor *weight, aclTensor *gradIntput, aclTensor *gradWeight, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnPreluBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
- 算子功能:激活函数PReLU(aclnnPrelu)的反向计算。
- 计算公式:
gradWeight的计算公式如下:
aclnnPreluBackwardGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnPreluBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *self, const aclTensor *weight, aclTensor *gradIntput, aclTensor *gradWeight, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- gradOutput:Device侧的aclTensor,输入张量,反向传播的梯度值,数据类型支持FLOAT、FLOAT16,支持非连续的Tensor,数据格式支持ND。
- self:Device侧的aclTensor,输入张量,prelu正向的输入,数据类型支持FLOAT、FLOAT16,支持非连续的Tensor,数据格式支持ND。
- weight:Device侧的aclTensor,输入张量,prelu的权重,数据类型支持FLOAT、FLOAT16,支持非连续的Tensor,数据格式支持ND,且元素个数必须等于self的通道数或者1。
- gradIntput:Device侧的aclTensor,输出张量,是self的反向梯度,与self的维度和数据类型相同。
- gradWeight:Device侧的aclTensor,输出张量,是weight的反向梯度,数据类型支持FLOAT16、FLOAT32。支持非连续的Tensor,数据格式支持ND,需要与weight的数据类型相同,weight的元素个数为1时,shape需要与weight相同;weight元素个数不为1时,需要为1维Tensor,且元素个数与weight的元素个数相同。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的gradOutput、self、weight、gradInput、gradWeight是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- gradOutput、self、weight、gradInput、gradWeight的数据类型不在支持的范围之内。
- gradOutput、self、weight、gradInput、gradWeight数据类型不同。
- gradOutput、self、weight、gradInput、gradWeight维度超过8。
- weight的元素个数不等于self的通道数或者1。
- weight的元素个数为1时,gradWeight的shape与weight不相同。
aclnnPreluBackward
- 接口定义:
aclnnStatus aclnnPreluBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnPreluBackwardGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_prelu_backward.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shape_size = 1; for (auto i : shape) { shape_size *= i; } return shape_size; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); // check根据自己的需要处理 CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> selfShape = {4, 2}; std::vector<int64_t> weightShape = {2}; std::vector<int64_t> gradOutputShape = {4, 2}; std::vector<int64_t> gradInputShape = {4, 2}; std::vector<int64_t> gradWeightShape = {2}; void* selfDeviceAddr = nullptr; void* gradOutputDeviceAddr = nullptr; void* weightDeviceAddr = nullptr; void* gradInputDeviceAddr = nullptr; void* gradWeightDeviceAddr = nullptr; aclTensor* self = nullptr; aclTensor* weight = nullptr; aclTensor* gradOutput = nullptr; aclTensor* gradInput = nullptr; aclTensor* gradWeight = nullptr; std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7}; std::vector<float> weightHostData = {0.5, 0.5}; std::vector<float> gradOutputHostData = {1, 1, 1, 1, 1, 1, 1, 1}; std::vector<float> gradInputHostData = {0, 0, 0, 0, 0, 0, 0, 0}; std::vector<float> gradWeightHostData = {0, 0}; // 创建weight aclTensor ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建self aclTensor ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建gradOutput aclTensor ret = CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr, aclDataType::ACL_FLOAT, &gradOutput); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建gradInput aclTensor ret = CreateAclTensor(gradInputHostData, gradInputShape, &gradInputDeviceAddr, aclDataType::ACL_FLOAT, &gradInput); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建gradWeight aclTensor ret = CreateAclTensor(gradWeightHostData, gradWeightShape, &gradWeightDeviceAddr, aclDataType::ACL_FLOAT, &gradWeight); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API,需要修改为具体的算子接口 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnPreluBackward第一段接口 ret = aclnnPreluBackwardGetWorkspaceSize(gradOutput, self, weight, gradInput, gradWeight, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnPreluBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnPreluBackward第二段接口 ret = aclnnPreluBackward(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnPreluBackward failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto gradInputSize = GetShapeSize(gradInputShape); std::vector<float> gradInputResultData(gradInputSize, 0); ret = aclrtMemcpy(gradInputResultData.data(), gradInputResultData.size() * sizeof(gradInputResultData[0]), gradInputDeviceAddr, gradInputSize * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < gradInputSize; i++) { LOG_PRINT("gradInput[%ld] is: %f\n", i, gradInputResultData[i]); } auto gradWeightSize = GetShapeSize(gradWeightShape); std::vector<float> gradWeightResultData(gradWeightSize, 0); ret = aclrtMemcpy(gradWeightResultData.data(), gradWeightResultData.size() * sizeof(gradWeightResultData[0]), gradWeightDeviceAddr, gradWeightSize * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < gradWeightSize; i++) { LOG_PRINT("gradWeight[%ld] is: %f\n", i, gradWeightResultData[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyTensor(gradOutput); aclDestroyTensor(self); aclDestroyTensor(weight); aclDestroyTensor(gradInput); aclDestroyTensor(gradWeight); // 7. 释放device资源, 需要根据具体API的接口定义修改 aclrtFree(selfDeviceAddr); aclrtFree(gradOutputDeviceAddr); aclrtFree(weightDeviceAddr); aclrtFree(gradInputDeviceAddr); aclrtFree(gradWeightDeviceAddr); if (workspaceSize > 0) { aclrtFree(workspaceAddr); } aclrtDestroyStream(stream); aclrtDestroyContext(context); aclrtResetDevice(deviceId); aclFinalize(); return 0; }
父主题: NN类算子接口