aclnnSort
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnSortGetWorkspaceSize(const aclTensor *self, bool stable, int64_t dim, bool descending, aclTensor *valuesOut, aclTensor *indicesOut, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnSort(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
算子功能:对张量中的元素根据某个维度进行升序/降序排序, 并返回对应的下标index值。例如输入张量是N维[0, N-1],需要根据维度[k]进行排序。
aclnnSortGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnSortGetWorkspaceSize(const aclTensor *self, bool stable, int64_t dim, bool descending, aclTensor *valuesOut, aclTensor *indicesOut, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- self: Device侧的aclTensor,数据类型支持FLOAT16、FLOAT32、INT8、INT16、INT32、INT64、UINT8。支持非连续的Tensor。数据格式支持ND。(当输入是FLOAT32时,Atlas 训练系列产品会将其转换成FLOAT16进行排序,然后再转换回FLOAT32;Atlas A2训练系列产品会保持FLOAT32进行排序。)
- stable:是否稳定排序,数据类型为BOOL。True为稳定排序,False为非稳定排序。
- dim:排序标准的维度,数据类型支持INT64。取值范围为 [-self.dim(), self.dim()-1]。
- descending:控制排序顺序,数据类型为BOOL。True为降序,False为升序。
- valuesOut:Device侧的aclTensor,数据类型支持FLOAT16、FLOAT32、DOUBLE、INT8、INT16、INT32、INT64、UINT8。支持非连续的Tensor。数据格式支持ND。shape需要与self一致。
- indicesOut:Device侧的aclTensor,数据类型支持INT64。支持非连续的Tensor,数据格式支持ND。shape需要与self一致。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、valuesOut或indicesOut是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- self、valuesOut或indicesOut的数据类型或数据格式不在支持的范围内,或者shape相互不匹配。
- dim的取值不在支持的范围内。
aclnnSort
- 接口定义:
aclnnStatus aclnnSort(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnSortGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_sort.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 bool stable = false; int64_t dim = 0; bool descending = false; std::vector<int64_t> selfShape = {3, 4}; std::vector<int64_t> outValuesShape = {3, 4}; std::vector<int64_t> outIndicesShape = {3, 4}; void* selfDeviceAddr = nullptr; void* outValuesDeviceAddr = nullptr; void* outIndicesDeviceAddr = nullptr; aclTensor* self = nullptr; aclTensor* outValues = nullptr; aclTensor* outIndices = nullptr; std::vector<int64_t> selfHostData = {7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6}; std::vector<int64_t> outValuesHostData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; std::vector<int64_t> outIndicesHostData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // 创建self aclTensor ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_INT64, &self); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建outValues和outIndices aclTensor ret = CreateAclTensor(outValuesHostData, outValuesShape, &outValuesDeviceAddr, aclDataType::ACL_INT64, &outValues); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(outIndicesHostData, outIndicesShape, &outIndicesDeviceAddr, aclDataType::ACL_INT64, &outIndices); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API,需要修改为具体的API名称 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnSort第一段接口 ret = aclnnSortGetWorkspaceSize(self, stable, dim, descending, outValues, outIndices, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSortGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnSort第二段接口 ret = aclnnSort(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSort failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outValuesShape); std::vector<int64_t> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outValuesDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result values [%ld] is: %ld\n", i, resultData[i]); } auto size2 = GetShapeSize(outIndicesShape); std::vector<int64_t> resultData2(size2, 0); ret = aclrtMemcpy(resultData2.data(), resultData2.size() * sizeof(resultData2[0]), outIndicesDeviceAddr, size * sizeof(resultData2[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size2; i++) { LOG_PRINT("result indices [%ld] is: %ld\n", i, resultData2[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyTensor(self); aclDestroyTensor(outValues); aclDestroyTensor(outIndices); return 0; }
父主题: NN类算子接口