下载
中文
注册

aclnnSplitWithSize

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnSplitWithSizeGetWorkspaceSize(const aclTensor *self, const aclIntArray *splitSize, int64_t dim, aclTensorList *out, uint64_t *workspaceSize, aclOpExecutor **executor)
  • 第二段接口:aclnnStatus aclnnSplitWithSize(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

算子功能:对张量self沿指定轴dim切分至splitSize中每个元素的大小。

aclnnSplitWithSizeGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnSplitWithSizeGetWorkspaceSize(const aclTensor *self, const aclIntArray *splitSize, int64_t dim, aclTensorList *out, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • self:Device侧的aclTensor,表示输入的张量。数据类型支持FLOAT、FLOAT16、DOUBLE、BFLOAT16(仅Atlas A2训练系列产品支持)、INT32、INT64、INT16、INT8、UINT8、BOOL、COMPLEX128和COMPLEX64,支持非连续的Tensor,数据格式支持ND。
    • splitSize:Host侧的aclIntArray,表示需要split的各块大小,数据类型支持INT32、INT64。所有块的大小总和需要等于self在dim维度上的shape大小。
    • dim:Host侧的整型,数据类型类型支持INT64,表示split的维度,取值范围是[-self.dim(), self.dim())。
    • out:Device侧的aclTensorList,表示拆分后的张量列表。数据类型支持FLOAT、FLOAT16、DOUBLE、BFLOAT16(仅Atlas A2训练系列产品支持)、INT32、INT64、INT16、INT8、UINT8、BOOL、COMPLEX128和COMPLEX64,支持非连续的Tensor,数据格式支持ND。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、splitSize、out是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • self和out的数据类型不在支持的范围内。
      • self的长度不在支持的范围内。
      • out中的tensor长度不在支持的范围之内。
      • dim的取值不在支持的范围内。
      • splitSize中各元素之和不等于被split维度的shape大小。

aclnnSplitWithSize

  • 接口定义:

    aclnnStatus aclnnSplitWithSize(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnSplitWithSizeGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

#include <algorithm>
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_split_with_size.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

void CheckResult(const std::vector<std::vector<int64_t>> &shapeList, const std::vector<void *> addrList) {
  for (size_t i = 0; i < shapeList.size(); i++) {
    auto size = GetShapeSize(shapeList[i]);
    std::vector<float> resultData(size, 0);
    auto ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), addrList[i],
                           size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return);
    for (int64_t j = 0; j < size; j++) {
      LOG_PRINT("result[%ld] is: %f\n", j, resultData[j]);
    }
  }
}

int main() {
  // 1.(固定写法)device/context/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {5, 2};
  std::vector<int64_t> shape1 = {1, 2};
  std::vector<int64_t> shape2 = {4, 2};
  int64_t splitValue[] = {1, 4};
  int64_t dim = 0;
  void* selfDeviceAddr = nullptr;
  void* shape1DeviceAddr = nullptr;
  void* shape2DeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* shape1Addr = nullptr;
  aclTensor* shape2Addr = nullptr;
  aclIntArray *splitSize = nullptr;
  std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
  std::vector<float> shape1HostData = {0, 5};
  std::vector<float> shape2HostData = {1, 2, 3, 4, 6, 7, 8, 9};

  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(shape1HostData, shape1, &shape1DeviceAddr, aclDataType::ACL_FLOAT, &shape1Addr);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(shape2HostData, shape2, &shape2DeviceAddr, aclDataType::ACL_FLOAT, &shape2Addr);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  splitSize = aclCreateIntArray(splitValue, 2);
  CHECK_RET(splitSize != nullptr, return ret);
  ret = CreateAclTensor(shape1HostData, shape1, &shape1DeviceAddr, aclDataType::ACL_FLOAT, &shape1Addr);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(shape2HostData, shape2, &shape2DeviceAddr, aclDataType::ACL_FLOAT, &shape2Addr);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensorList
  std::vector<aclTensor*> tmp = {shape1Addr, shape2Addr};
  aclTensorList* out = aclCreateTensorList(tmp.data(), tmp.size());
  CHECK_RET(out != nullptr, return ret);

   // 3. 调用CANN算子库API,需要修改为具体的API名称
  uint64_t workspaceSize = 0;
  aclOpExecutor *executor;
  // 调用aclnnSplitWithSize第一段接口
  ret = aclnnSplitWithSizeGetWorkspaceSize(self, splitSize, dim, out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSplitWithSizeGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void *workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    auto ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnSplitWithSize第二段接口
  ret = aclnnSplitWithSize(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSplitWithSize failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  CheckResult({shape1, shape2}, {shape1DeviceAddr, shape2DeviceAddr});

  // 6. 释放申请的变量,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyIntArray(splitSize);
  aclDestroyTensorList(out);
  return 0;
}