下载
中文
注册

aclnnUnique2

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnUnique2GetWorkspaceSize( const aclTensor *self, bool sorted, bool returnInverse, bool returnCounts, aclTensor *valueOut, aclTensor *inverseOut, aclTensor *countsOut, uint64_t *workspaceSize, aclOpExecutor **executor)
  • 第二段接口:aclnnStatus aclnnUnique2(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

算子功能:返回输入张量中的唯一元素。算子aclnnUnique功能的增强,新增输出countsOut,表示valueOut中各元素在输入self中出现的次数,用returnCounts参数控制。

aclnnUnique2GetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnUnique2GetWorkspaceSize( const aclTensor *self, bool sorted, bool returnInverse, bool returnCounts, aclTensor *valueOut, aclTensor *inverseOut, aclTensor *countsOut, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • self:Device侧的aclTensor,数据类型支持BOOL、FLOAT、FLOAT16、DOUBLE、UINT8、INT8、UINT16、INT16、INT32、UINT32、UINT64、INT64,数据格式支持ND。
    • sorted:Host侧的布尔型,数据类型支持BOOL,表示是否对valueOut按升序进行排序。
    • returnInversie:Host侧的布尔型,表示是否返回输入数据中各个元素在valueOut中的下标。
    • returnCounts:Host侧的布尔型,表示是否返回valueOut中每个独特元素在原输入张量中的数目。
    • valueOut:Device侧的aclTensor, 第一个输出张量,输入张量中的唯一元素。数据类型支持BOOL、FLOAT、FLOAT16、DOUBLE、UINT8、INT8、UINT16、INT16、INT32、UINT32、UINT64、INT64,数据格式支持ND。
    • inverseOut:Device侧的aclTensor,第二个输出张量,仅当returnInversie为True时该参数才生效,返回self中各元素在valueOut中出现的位置下标。数据类型支持INT64,shape与self保持一致。
    • countsOut:Device侧的aclTensor,第三个输出张量,仅当returnCounts为True时该参数才生效,返回valueOut中各元素在self中出现的次数。数据类型支持INT64,shape与valueOut保持一致。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、valueOut、inverseOut、countsOut是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • self或valueOut的数据类型不在支持的范围内。
      • self为非连续的Tensor。
      • returnInvese为True时,inverseOut与self的shape不一致。
      • returnCounts为True时,countsOut与alueOut的shape不一致。

aclnnUnique2

  • 接口定义:

    aclnnStatus aclnnUnique2(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnUnique2GetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_unique2.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
   if (!(cond)) {                   \
     return_expr;                   \
   }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
   printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
   shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                   aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
   strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                           shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> valueShape = {8};
  std::vector<int64_t> inverseShape = {4, 2};
  std::vector<int64_t> countsShape = {8};
  void* selfDeviceAddr = nullptr;
  void* valueDeviceAddr = nullptr;
  void* inverseDeviceAddr = nullptr;
  void* countsDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* valueOut = nullptr;
  aclTensor* inverseOut = nullptr;
  aclTensor* countsOut = nullptr;
  std::vector<float> selfHostData = {0, 1, 2, 3, 4, 1, 2, 3};
  std::vector<float> valueHostData = {0, 0, 0, 0, 0, 0, 0, 0};
  std::vector<int64_t> inverseHostData = {0, 0, 0, 0, 0, 0, 0, 0};
  std::vector<int64_t> countsHostData = {0, 0, 0, 0, 0, 0, 0, 0};
  bool sorted = false;
  bool returnInverse = false;
  bool returnCounts = false;

  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建valueOut aclTensor
  ret = CreateAclTensor(valueHostData, valueShape, &valueDeviceAddr, aclDataType::ACL_FLOAT, &valueOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建inverseOut aclTensor
  ret = CreateAclTensor(inverseHostData, inverseShape, &inverseDeviceAddr, aclDataType::ACL_INT64, &inverseOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建countsOut aclTensor
  ret = CreateAclTensor(countsHostData, countsShape, &countsDeviceAddr, aclDataType::ACL_INT64, &countsOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3.调用CANN算子库API,需要修改为具体的算子接口
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnUnique2第一段接口
  ret = aclnnUnique2GetWorkspaceSize(self, sorted, returnInverse, returnCounts, valueOut, inverseOut, countsOut, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnUnique2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
   ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
   CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnUnique2第二段接口
  ret = aclnnUnique2(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnUnique2 failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(valueShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), valueDeviceAddr, size * sizeof(float),
                   ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
   LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(valueOut);
  aclDestroyTensor(inverseOut);
  aclDestroyTensor(countsOut);
  return 0;
}